ON THE QUADRATIC TWIST OF ELLIPTIC CURVES WITH FULL 2-TORSION

ZHANGJIE WANG AND SHENXING ZHANG

Contents

1. Introduction 1
1.1. Rank zero twists 2
1.2. Distribution 3
1.3. Notations 3
2. Preliminaries 4
2.1. Gauss genus theory 4
2.2. Torsion subgroup 4
2.3. Cassels pairing 5
3. 2-descent method 6
3.1. Homogeneous spaces 6
3.2. Matrix representation 8
4. Second minimal Shafarevich-Tate group 9
4.1. Proof of Theorem 1.1(A) 10
4.2. Proof of Theorem 1.1(B) 12
5. Equidistribution of residue symbols 16
5.1. Residue symbols 16
5.2. Analytic results 17
5.3. Equidistribution of residue symbols 18
6. Distribution result 24
References 25

Abstract

Let $E: y^{2}=x\left(x-a^{2}\right)\left(x+b^{2}\right)$ be an elliptic curve with full 2torsion group, where a and b are coprime integers and $2\left(a^{2}+b^{2}\right)$ is a square. Assume that the 2-Selmer group of E has rank two. We characterize all quadratic twists of E with Mordell-Weil rank zero and 2-primary Shafarevich-Tate groups $(\mathbb{Z} / 2 \mathbb{Z})^{2}$, under certain conditions. We also obtain a distribution result of these elliptic curves.

1. Introduction

In [Wan16], the first author used Cassels pairing to characterize all congruent elliptic curves $y^{2}=x^{3}-n^{2} x$ with Mordell-Weil rank zero and second minimal 2primary Shafarevich-Tate group, where all prime divisors of n are congruent to 1

[^0]modulo 4. The goal of this paper is to generalize this result to the quadratic twist of particular elliptic curves with full 2 -torsion.

Let (a, b, c) be a primitive triple of positive integers such that $a^{2}+b^{2}=2 c^{2}$. By elementary number theory, this is equivalent to say,

$$
a=\left|\alpha^{2}-2 \alpha \beta-\beta^{2}\right|, \quad b=\left|\alpha^{2}+2 \alpha \beta-\beta^{2}\right|, \quad c=\alpha^{2}+\beta^{2}
$$

for some coprime integers α, β with different parities. Denote by

$$
E: y^{2}=x\left(x-a^{2}\right)\left(x+b^{2}\right)
$$

an elliptic curve with full 2-torsion group, and

$$
E^{(n)}: y^{2}=x\left(x-a^{2} n\right)\left(x+b^{2} n\right)
$$

a quadratic twist of E, where n is a positive square-free integer. When $a=b=1$, this is just the congruent elliptic curve.
1.1. Rank zero twists. When $n>1$, denote by \mathcal{A} the ideal class group of $K=$ $\mathbb{Q}(\sqrt{-n})$ and

$$
h_{2^{m}}(n):=\operatorname{dim}_{\mathbb{F}_{2}} \mathcal{A}^{2^{m-1}} / \mathcal{A}^{2^{m}}
$$

its 2^{m}-rank for a positive integer m. Denote by $\operatorname{Sel}_{2}\left(E^{(n)} / \mathbb{Q}\right)$ the 2-Selmer group of $E^{(n)}$ over \mathbb{Q}.

Theorem 1.1 (=Theorems 4.2 and 4.4). Assume that $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Let $n \equiv 1 \bmod 8$ be a positive square-free integer coprime to abc where each prime factor of n is a quadratic residue modulo every prime factor of abc.
(A) If all prime factors of n are congruent to ± 1 modulo 8 , then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} E^{(n)}(\mathbb{Q})=0$ and $\amalg\left(E^{(n)} / \mathbb{Q}\right)\left[2^{\infty}\right] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$;
(2) $h_{4}(n)=1$ and $h_{8}(n)=0$.
(B) If all prime factors of n are congruent to 1 modulo 4 , then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} E^{(n)}(\mathbb{Q})=0$ and $\amalg\left(E^{(n)} / \mathbb{Q}\right)\left[2^{\infty}\right] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$;
(2) $h_{4}(n)=1$ and $h_{8}(n) \equiv \frac{d-1}{4} \bmod 2$.

Here d is the odd part of $d_{0} \mid 2 n$ such that the ideal class $\left[\left(d_{0}, \sqrt{-n}\right)\right]$ is the non-trivial element in $\mathcal{A}[2] \cap \mathcal{A}^{2}$.

Remark 1.2. (1) When $(a, b)=(1,1),(7,23),(23,47),(119,167),(167,223),(287,359)$, we have $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
(2) In Theorem 1.1(B), if $h_{4}(n)=1$, then the non-trivial element in $\mathcal{A}[2] \cap \mathcal{A}^{2}$ is $\left[\left(d_{0}, \sqrt{-n}\right)\right]$ for some positive divisor d_{0} of $2 n$. If d_{0}^{\prime} is another positive divisor of $2 n$ such that $\left[\left(d_{0}, \sqrt{-n}\right)\right]=\left[\left(d_{0}^{\prime}, \sqrt{-n}\right)\right]$, then $d_{0} d_{0}^{\prime}=n$ or $4 n$. See $\S 2.1$.

We will first show that $E_{\text {tor }}^{(n)}(\mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$ in $\S 2.2$. In $\S 3$, we will study the local solvability of homogeneous spaces and then express the 2-Selmer group as the kernel of the generalized Monsky matrix \mathcal{M}_{n}. Then we will give the proof of Theorem 1.1 in §4. The strategy is similar to [Wan16].
1.2. Distribution. Denote by

- $C_{k}(x)$ the set of positive square-free integers $n \leqslant x$ with exactly k prime factors;
- $\mathscr{Q}_{k}(x)$ the set of $n \in C_{k}(x)$ coprime to $a b c$ such that each prime factor of $n \equiv 1 \bmod 8$ is a quadratic residue modulo every prime factor of $a b c$ and congruent to 1 modulo 4 ;
- $\mathscr{P}_{k}(x)$ the set of all $n \in \mathscr{Q}_{k}(x)$ such that Theorem 1.1(B)(2) holds.

We will use the standard symbols in analytic number theory: " $\sim, \ll, O(\cdot), o(\cdot), \operatorname{Li}(x)$ ", which can be found in [IR90]. The equidistribution property of Legendre symbols in [Rho09] implies

$$
\begin{equation*}
\# C_{k}(x) \sim \frac{x(\log \log x)^{k-1}}{(k-1)!\log x} \tag{1.1}
\end{equation*}
$$

Theorem 1.3. Assume that $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Then

$$
\# \mathscr{P}_{k}(x) \sim 2^{-k \ell-k-2}\left(u_{k}+\left(2^{-1}-2^{-k}\right) u_{k-1}\right) \cdot \# C_{k}(x)
$$

where ℓ is the number of different prime factors of abc and

$$
u_{k}:=\prod_{1 \leqslant i \leqslant k / 2}\left(1-2^{1-2 i}\right) .
$$

We will use the method in [CO89] to show the equidistribution property of residue symbols in § 5.3 and then use this to prove Theorem 1.3 in § 6 .
1.3. Notations. We will not list the notations appeared above.

- $n=p_{1} \cdots p_{k}$ the prime decomposition of n.
- $a b c=q_{1}^{t_{1}} \cdots q_{\ell}^{t_{\ell}}$ the prime decomposition of $a b c$.
- $\operatorname{gcd}\left(m_{1}, \ldots, m_{t}\right)$ the greatest common divisor of integers m_{1}, \ldots, m_{t}.
- $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)=\operatorname{Sel}_{2}\left(E^{(n)}\right) / E^{(n)}(\mathbb{Q})[2]$ the pure 2-Selmer group of $E^{(n)}$, see (2.4).
- D_{Λ} the homogeneous space associated to a rational triple $\left(d_{1}, d_{2}, d_{3}\right)$, see (2.2).
- $(\alpha, \beta)_{v}$ the Hilbert symbol, $\alpha, \beta \in \mathbb{Q}_{v}^{\times}$.
- $[\alpha, \beta]_{v}$ the additive Hilbert symbol, i.e., the image of $(\alpha, \beta)_{v}$ under the isomorphism $\{ \pm 1\} \xrightarrow{\sim} \mathbb{F}_{2}$.
- $\left(\frac{\alpha}{\beta}\right)=\prod_{p \mid \beta}(\alpha, \beta)_{p}$ the Jacobi symbol with $p \mid \beta$ counted with multiplicity, where $\operatorname{gcd}(\alpha, \beta)=1$ and $\beta>0$.
- $\left[\frac{\alpha}{\beta}\right]$ the additive Jacobi symbol, i.e., the image of $\left(\frac{\alpha}{\beta}\right)$ under the isomorphism $\{ \pm 1\} \xrightarrow{\sim} \mathbb{F}_{2}$.
- $\mathcal{D}(K)$ the set of positive square-free divisors of $2 n$.
- $\mathbf{0}=(0, \ldots, 0)^{\mathrm{T}}$ and $\mathbf{1}=(1, \ldots, 1)^{\mathrm{T}}$.
- I the identity matrix and \mathbf{O} the zero matrix.
- $\mathbf{A}=\mathbf{A}_{n}$ a matrix associated to n, see (3.2).
- \mathbf{R}_{n} the Rédei matrix of $K=\mathbb{Q}(\sqrt{-n})$, see (2.1).
- $\mathbf{D}_{u}=\operatorname{diag}\left\{\left[\frac{u}{p_{1}}\right], \ldots,\left[\frac{u}{p_{k}}\right]\right\}$.
- $\mathbf{b}_{u}=\mathbf{D}_{u} \mathbf{1}=\left(\left[\frac{u}{p_{1}}\right], \ldots,\left[\frac{u}{p_{k}}\right]\right)$.
- \mathbf{M}_{n} the Monsky matrix associated to n, see (3.3).
- \mathcal{M}_{n} the generalized Monsky matrix associated to $E^{(n)}$, see (3.4).
- $I=\sqrt{-1}$.
- \mathcal{P} the set of primary primes of $\mathbb{Z}[I]$ with positive imaginary part.
- $\left(\frac{\alpha}{\lambda}\right)_{2}$ the quadratic residue symbol over $\mathbb{Z}[I]$, see (5.1).
- $\left(\frac{\alpha}{\lambda}\right)_{4}$ the quartic residue symbol over $\mathbb{Z}[I]$, see (5.2).
- $\left(\frac{a}{d}\right)_{4}:=\left(\frac{a}{\lambda}\right)_{4}$ the rational quartic residue symbol, see (5.3).
- $\Lambda(\mathfrak{a})$ the Mangoldt function, see (5.4).
- χ_{0} the trivial character modulo a given integral ideal, see §5.2.
- $\psi(x, \chi)=\sum_{\mathbf{N a} \leqslant x} \chi(\mathfrak{a}) \Lambda(\mathfrak{a})$, see (5.5).
- $C_{k}(x, \alpha, \mathbf{B}), C_{k}^{\prime}(x, \alpha, \mathbf{B}), T_{k}(x), T_{k}^{\prime}(x)$ sets associated to x, α, \mathbf{B}, see $\S 5.3$.
- $\binom{k}{2}=k(k-1) / 2$ the binomial coefficient.

2. Preliminaries

2.1. Gauss genus theory. In this subsection, we will recall Gauss genus theory, which can be found in [Wan16, § 3] for details. For our purpose, assume that $n=p_{1} \cdots p_{k} \equiv 1 \bmod 4$. Denote by \mathcal{A} the ideal class group of $K=\mathbb{Q}(\sqrt{-n})$. Denote by $\mathcal{D}(K)$ the set of positive square-free divisors of $2 n$. The classical Gauss genus theory tells that

$$
\mathcal{A}[2]=\{[(d, \sqrt{-n})]: d \in \mathcal{D}(K)\} \quad \text { and } \quad h_{2}(n)=\operatorname{dim}_{\mathbb{F}_{2}} \mathcal{A}[2]=t-1
$$

Denote by $p_{k+1}=2$ and define the Rédei matrix

$$
\begin{equation*}
\mathbf{R}_{n}=\left(\left[p_{j},-n\right]_{p_{i}}\right)_{i, j} \in M_{k \times(k+1)}\left(\mathbb{F}_{2}\right) . \tag{2.1}
\end{equation*}
$$

Proposition 2.1 ([Red34]). We have

$$
\begin{array}{rlcc}
\operatorname{Ker} \mathbf{R}_{n} & \sim \mathcal{D}(K) \cap \mathbf{N}_{K / \mathbb{Q}} K^{\times} & \longrightarrow \mathcal{A}[2] \cap \mathcal{A}^{2} \\
\left(v_{p_{1}}(d), \ldots, v_{p_{k+1}}(d)\right) & \longleftrightarrow & \longmapsto & \longmapsto[(d, \sqrt{-n})]
\end{array}
$$

where the second arrow is a two-to-one onto homomorphism with kernel $\{1, n\}$. Hence $h_{4}(n)=k-\operatorname{rank} \mathbf{R}_{n}$.

Proposition 2.2 ([Wan16, Proposition 3.6]). For any $2^{r} d \in \mathcal{D}(K) \cap \mathbf{N}_{K / \mathbb{Q}} K^{\times}$ with odd d, let (α, β, γ) be a primitive triple of positive integers satisfying

$$
d \alpha^{2}+\frac{n}{d} \beta^{2}=2^{r} \gamma^{2}
$$

Then $\left[\left(2^{r} d, \sqrt{-n}\right)\right] \in \mathcal{A}^{4}$ if and only if

$$
\mathbf{b}_{\gamma}=\left(\left[\frac{\gamma}{p_{1}}\right], \ldots,\left[\frac{\gamma}{p_{k}}\right]\right)^{\mathrm{T}} \in \operatorname{Im} \mathbf{R}_{n}
$$

2.2. Torsion subgroup.

Proposition 2.3. For any positive square-free integer $n, E_{\mathrm{tor}}^{(n)}(\mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
Lemma 2.4 ([Ono96]). Let $\mathcal{E}: y^{2}=x(x-a)(x+b)$ be an elliptic curve with $a, b \in \mathbb{Z}$.
(1) $\mathcal{E}(\mathbb{Q})$ has a point of order 4 if and only if one of the three pairs $(-a, b),(a, a+$ $b)$ and $(-b,-a-b)$ consists of squares of integers.
(2) $\mathcal{E}(\mathbb{Q})$ has a point of order 3 if and only if there exist integers d, u, v such that $\operatorname{gcd}(u, v)=1, d^{2} u^{3}(u+2 v)=-a, d^{2} v^{3}(v+2 u)=b$ and $u / v \notin$ $\{-2,-1 / 2,-1,1,0\}$.

Proof of Proposition 2.3. Since $E^{(n)}$ has full rational 2-torsion, $E_{\text {tor }}^{(n)}(\mathbb{Q})$ contains a subgroup isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$. By Mazur's classification theorem [Maz77, Maz78], one have

$$
E_{\text {tor }}^{(n)}(\mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 N \mathbb{Z}
$$

for some $N \in\{1,2,3,4\}$. We only need to show that $E^{(n)}(\mathbb{Q})$ contains no point of order 4 or 3 .

Since the three pairs in Lemma 2.4(1) are $\left(-a^{2} n, b^{2} n\right),\left(a^{2} n, 2 c^{2} n\right)$ and $\left(-b^{2} n,-2 c^{2} n\right)$, $E^{(n)}(\mathbb{Q})$ contains no point of order 4.

Assume that there are integers d, u, v such that $\operatorname{gcd}(u, v)=1$,

$$
d^{2} u^{3}(u+2 v)=-a^{2} n \quad \text { and } \quad d^{2} v^{3}(v+2 u)=b^{2} n
$$

Clearly, $d^{2}=1$ and $n=\operatorname{gcd}(u+2 v, v+2 u)=\operatorname{gcd}(3, u-v)=1$ or 3. Since a and b are odd, so is u, We may assume that $v>0$, then $u<0$. Since $n \mid(u+2 v, v+2 u)$, we may write $v=\alpha^{2}, u=-\beta^{2}$. Then $\left(\alpha^{2}-2 \beta^{2}\right) / n$ and $\left(2 \alpha^{2}-\beta^{2}\right) / n$ are squares, which is impossible by modulo 8 . Hence $E^{(n)}(\mathbb{Q})$ contains no point of order 3 by Lemma 2.4(2).
2.3. Cassels pairing. As shown in [Cas98], the 2-Selmer group $\operatorname{Sel}_{2}\left(E^{(n)}\right)$ can be identified with

$$
\left\{\Lambda=\left(d_{1}, d_{2}, d_{3}\right) \in\left(\mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}\right)^{3}: D_{\Lambda}\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \emptyset, d_{1} d_{2} d_{3} \equiv 1 \bmod \mathbb{Q}^{\times 2}\right\}
$$

where D_{Λ} is a genus one curve defined by

$$
\begin{cases}H_{1}: & -b^{2} n t^{2}+d_{2} u_{2}^{2}-d_{3} u_{3}^{2}=0 \tag{2.2}\\ H_{2}: & -a^{2} n t^{2}+d_{3} u_{3}^{2}-d_{1} u_{1}^{2}=0 \\ H_{3}: & 2 c^{2} n t^{2}+d_{1} u_{1}^{2}-d_{2} u_{2}^{2}=0\end{cases}
$$

Under this identification, the points $O,\left(a^{2} n, 0\right),\left(-b^{2} n, 0\right),(0,0)$ and non-torsion $(x, y) \in E^{(n)}(\mathbb{Q})$ correspond to

$$
\begin{equation*}
(1,1,1),(2,2 n, n),(-2 n, 2,-n),(-n, n,-1) \tag{2.3}
\end{equation*}
$$

and $\left(x-a^{2} n, x+b^{2} n, x\right)$ respectively.
Cassels in [Cas98] defined a skew-symmetric bilinear pairing $\langle-,-\rangle$ on the $\mathbb{F}_{2^{-}}$ vector space

$$
\begin{equation*}
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right):=\operatorname{Sel}_{2}\left(E^{(n)}\right) / E^{(n)}(\mathbb{Q})[2] \tag{2.4}
\end{equation*}
$$

We will write it additively. For any $\Lambda \in \operatorname{Sel}_{2}\left(E^{(n)}\right)$, choose $P=\left(P_{v}\right) \in D_{\Lambda}\left(\mathbb{A}_{\mathbb{Q}}\right)$. Since H_{i} is locally solvable everywhere, there exists $Q_{i} \in H_{i}(\mathbb{Q})$ by Hasse-Minkowski principle. Let L_{i} be a linear form in three variables such that $L_{i}=0$ defines the tangent plane of H_{i} at Q_{i}. Then for any $\Lambda^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right) \in \operatorname{Sel}_{2}\left(E^{(n)}\right)$, define

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\sum_{v}\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{v} \in \mathbb{F}_{2}, \quad \text { where } \quad\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{v}=\sum_{i=1}^{3}\left[L_{i}\left(P_{v}\right), d_{i}^{\prime}\right]_{v}
$$

This pairing is independent of the choice of P and Q_{i}, and is trivial on $E^{(n)}(\mathbb{Q})[2]$.
Lemma 2.5 ([Cas98, Lemma 7.2]). The local Cassels pairing $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{p}=0$ if

- $p \nmid 2 \infty$,
- the coefficients of H_{i} and L_{i} are all integral at p for $i=1,2,3$, and
- modulo D_{Λ} and L_{i} by p, they define a curve of genus 1 over \mathbb{F}_{p} together with tangents to it.

Lemma 2.6. The following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} E^{(n)}(\mathbb{Q})=0$ and $\amalg\left(E^{(n)} / \mathbb{Q}\right)\left[2^{\infty}\right] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 t}$;
(2) $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 t}$ and the Cassels pairing on $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is nondegenerate.

Proof. Note that $E^{(n)}(\mathbb{Q})[2]=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ by Proposition 2.3. The proof is similar to [Wan16, p. 2157].

3. 2-DESCENT METHOD

3.1. Homogeneous spaces.

Lemma 3.1. Let n be a positive square-free integer prime to $2 a b c$ and $\Lambda=$ $\left(d_{1}, d_{2}, d_{3}\right)$, where d_{1}, d_{2}, d_{3} are square-free integers.
(1) If $p \nmid 2 a b c n$, then $D_{\Lambda}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if $p \nmid d_{1} d_{2} d_{3}$.
(2) If $D_{\Lambda}\left(\mathbb{Q}_{2}\right) \neq \emptyset$, then d_{1} and d_{2} have the same parity.
(3) If both of d_{1} and d_{2} are odd, then $D_{\Lambda}\left(\mathbb{Q}_{2}\right) \neq \emptyset$ if and only if either $4 \mid$ $d_{1}-1,8 \mid d_{1}-d_{2}$ or $4\left|d_{1}+n, 8\right| d_{1}-d_{2}+2 n$.
(4) $D_{\Lambda}(\mathbb{R}) \neq \emptyset$ if and only if $d_{2}>0$.

Proof. Certainly, $\operatorname{gcd}\left(d_{1}, d_{2}, d_{3}\right)=1$. Since we are dealing with homogeneous equations, we may assume that u_{1}, u_{2}, u_{3} and t are p-adic integers and at least one of them is a p-adic unit.
(1) By classical descent theory, see [Sil09, Theorem X.1.1, Corollary X.4.4].
(2) Suppose that $D_{\Lambda}\left(\mathbb{Q}_{2}\right) \neq \emptyset$. If $2 \mid d_{1}, 2 \nmid d_{2}$, then $2 \mid d_{3}$. We have $2 \mid u_{2}$ by H_{3} and $2 \mid t$ by H_{1}. Then $2 \mid u_{3}$ by H_{1} and $2 \mid u_{1}$ by H_{2}, which is impossible. The case $2 \nmid d_{1}, 2 \mid d_{2}$ is similar. Hence d_{1} and d_{2} have the same parity.
(3) If $D_{\Lambda}\left(\mathbb{Q}_{2}\right) \neq \emptyset$, then both of u_{1}, u_{2} are odd by H_{3} and exactly one of t and u_{3} is even by H_{2}. If t is even and u_{3} is odd, then $4\left|d_{1}-d_{3}, 8\right| d_{1}-d_{2}$ by $H_{2} \bmod 4$ and $H_{3} \bmod 8$. Note that if $8 \mid d_{1}-d_{2}$, then $d_{3} \equiv d_{1} d_{2} \equiv 1 \bmod 8$. If t is odd and u_{3} is even, then $4\left|d_{1}+n, 8\right| d_{1}-d_{2}+2 n$ by $H_{2} \bmod 4$ and $H_{3} \bmod 8$.

Conversely, if $4\left|d_{1}-1,8\right| d_{1}-d_{2}$, then $d_{3} \equiv d_{1} d_{2} \equiv 1 \bmod 8$. Take

- $t=0, u_{1}=\sqrt{1 / d_{1}}, u_{2}=\sqrt{1 / d_{2}}, u_{3}=\sqrt{1 / d_{3}}$ if $8 \mid d_{1}-1$;
- $t=2, u_{1}=1, u_{2}=\sqrt{\left(d_{1}+8 c^{2} n\right) / d_{2}}, u_{3}=\sqrt{\left(d_{1}+4 a^{2} n\right) / d_{3}}$ if $8 \mid d_{1}-5$.

If $4\left|d_{1}+n, 8\right| d_{1}-d_{2}+2 n$, take

- $t=1, u_{1}=\sqrt{-a^{2} n / d_{1}}, u_{2}=\sqrt{b^{2} n / d_{2}}, u_{3}=0$ if $8 \mid d_{1}+n$;
- $t=1, u_{1}=\sqrt{\left(4 d_{3}-a^{2} n\right) / d_{1}}, u_{2}=\sqrt{\left(4 d_{3}+b^{2} n\right) / d_{2}}, u_{3}=2$ if $8 \mid d_{1}+n+4$.
(4) Suppose that $D_{\Lambda}(\mathbb{R}) \neq \emptyset$. If $d_{2}<0$, then $d_{3}<0$ by H_{1}. Thus $d_{1}>0$ by $d_{1} d_{2} d_{3} \in \mathbb{Q}^{\times 2}$ and $d_{1}<0$ by H_{2}, which is impossible. Hence $d_{2}>0$. Another direction is trivial.

Assume that n is a positive square-free integer prime to $2 a b c$. By Lemma 3.1 and (2.3), any element of the pure 2-Selmer group $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ has a unique representative $\Lambda=\left(d_{1}, d_{2}, d_{3}\right)$, where d_{1}, d_{2}, d_{3} are positive square-free integers dividing nabc. In the rest part of this article, Λ is always assumed to be in this form and we will write $\Lambda=\left(d_{1}, d_{2}, d_{3}\right) \in \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ for simplicity.
Lemma 3.2. Let n be a positive square-free integer prime to $2 a b c$ and $\Lambda=$ $\left(d_{1}, d_{2}, d_{3}\right)$. Let p be a prime factor of n. Then $D_{\Lambda}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if

- $\left(\frac{d_{1}}{p}\right)=\left(\frac{d_{2}}{p}\right)=1$, if $p \nmid d_{1}, p \nmid d_{2}$;
- $\left(\frac{2 d_{1}}{p}\right)=\left(\frac{2 n / d_{2}}{p}\right)=1$, if $p \nmid d_{1}, p \mid d_{2}$;
- $\left(\frac{-2 n / d_{1}}{p}\right)=\left(\frac{2 d_{2}}{p}\right)=1$, if $p \mid d_{1}, p \nmid d_{2}$;
- $\left(\frac{-n / d_{1}}{p}\right)=\left(\frac{n / d_{2}}{p}\right)=1$, if $p\left|d_{1}, p\right| d_{2}$.

Proof. Assume that $p \nmid d_{1} d_{2}$, then $p \nmid d_{3}$. If $D_{\Lambda}\left(\mathbb{Q}_{p}\right) \neq \emptyset$, then $\left(\frac{d_{2} d_{3}}{p}\right)=\left(\frac{d_{1} d_{3}}{p}\right)=1$ by H_{2} and H_{3}. That's to say, $\left(\frac{d_{1}}{p}\right)=\left(\frac{d_{2}}{p}\right)=1$. Conversely, if $\left(\frac{d_{1}}{p}\right)=\left(\frac{d_{2}}{p}\right)=1$, then $\left(0, \sqrt{1 / d_{1}}, \sqrt{1 / d_{2}}, \sqrt{1 / d_{3}}\right) \in D_{\Lambda}\left(\mathbb{Q}_{p}\right)$. The rest cases can be proved similarly as in the congruent elliptic curve case, see [HB94, Appendix].

Lemma 3.3. Let n be a positive square-free integer prime to $2 a b c$ and $\Lambda=$ $\left(d_{1}, d_{2}, d_{3}\right)$. Let p be a prime factor of abc.
(1) If $p \mid a$, then $D_{\Lambda}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if one of the following cases holds:

- $p \nmid d_{2}, p \nmid d_{1},\left(\frac{d_{2}}{p}\right)=1$;
- $p \nmid d_{2}, p \mid d_{1},\left(\frac{d_{2}}{p}\right)=\left(\frac{n}{p}\right)=1$.
(2) If $p \mid b$, then $D_{\Lambda}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if one of the following cases holds:
- $p \nmid d_{1}, p \nmid d_{2},\left(\frac{d_{1}}{p}\right)=1$;
- $p \nmid d_{1}, p \mid d_{2},\left(\frac{d_{1}}{p}\right)=\left(\frac{-n}{p}\right)=1$.
(3) If $p \mid c$, then $D_{\Lambda}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ if and only if one of the following cases holds:
- $p \nmid d_{3}, p \nmid d_{1},\left(\frac{d_{3}}{p}\right)=1$;
- $p \nmid d_{3}, p \mid d_{1},\left(\frac{d_{3}}{p}\right)=\left(\frac{n}{p}\right)=1$.

Proof. Let p be a prime factor of a.
Suppose that $D_{\Lambda}\left(\mathbb{Q}_{p}\right) \neq \emptyset$. If $p \mid d_{2}$, then p divides exactly one of d_{1} and d_{3}. We may assume that $p \mid d_{1}$ and $p \nmid d_{3}$. Then p divides u_{3}, t by H_{2}, H_{3} and then u_{2}, u_{1} by H_{1}, H_{2}. So $p \mid \operatorname{gcd}\left(t, u_{1}, u_{2}, u_{3}\right)$, which will cause a contradiction. Hence $p \nmid d_{2}$.

Suppose that $p \nmid d_{1}, p \nmid d_{3}$. If $D_{\Lambda}\left(\mathbb{Q}_{p}\right) \neq \emptyset$, then $\left(\frac{d_{1} d_{3}}{p}\right)=\left(\frac{d_{2}}{p}\right)=1$ by H_{2}. Conversely, if $\left(\frac{d_{2}}{p}\right)=1$, then we may take

$$
\begin{aligned}
& u_{1}=d_{2} / \operatorname{gcd}\left(d_{1}, d_{2}\right) \\
& u_{3}^{2}=d_{2}+a^{2} n t^{2} / d_{3} \equiv d_{2} \bmod p \\
& u_{2}^{2}=d_{3}+2 c^{2} n t^{2} / d_{2}
\end{aligned}
$$

where $t \in \mathbb{Z}_{p}$ such that $d_{3}+2 c^{2} n t^{2} / d_{2}$ is a square in \mathbb{Z}_{p}. In fact, if $-2 n d_{3}$ is quadratic residue modulo p, then we may take $t=\sqrt{-\frac{d_{2} d_{3}}{2 c^{2} n}}$ and $u_{2}=0$; if $-2 n d_{1}$ is not a quadratic residue modulo p, then there exists $t \in\{0,1, \ldots,(p-1) / 2\}$ such that $d_{3}+2 c^{2} n t^{2} / d_{2} \bmod p$ is a nonzero square. Hence $D_{\Lambda}\left(\mathbb{Q}_{p}\right)$ is non-empty.

Suppose that $p\left|d_{1}, p\right| d_{3}$. If $D_{\Lambda}\left(\mathbb{Q}_{p}\right) \neq \emptyset$, then $\left(\frac{d_{2} n}{p}\right)=1$ by H_{1} and $\left(\frac{d_{2}}{p}\right)=1$ by H_{2}. Conversely, if $\left(\frac{d_{2}}{p}\right)=\left(\frac{n}{p}\right)=1$, then we may take $t=1$ and

$$
\begin{aligned}
& u_{1}=d_{2} / \operatorname{gcd}\left(d_{1}, d_{2}\right) \\
& u_{3}^{2}=d_{2}+a^{2} n / d_{3} \equiv d_{2} \bmod p \\
& u_{2}^{2}=d_{3}+2 c^{2} n / d_{2} \equiv b^{2} n / d_{2} \bmod p
\end{aligned}
$$

Hence $D_{\Lambda}\left(\mathbb{Q}_{p}\right)$ is non-empty.
The rest cases can be proved similarly.
Lemma 3.4. Let n be a positive square-free integer prime to $2 a b c$ and $\Lambda=$ $\left(d_{1}, d_{2}, d_{3}\right)$. If $D_{\Lambda}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for all places $v \neq 2$, then $D_{\Lambda}\left(\mathbb{Q}_{2}\right)$ is also non-empty.

Proof. Since $D_{\Lambda}\left(\mathbb{Q}_{v}\right) \neq \emptyset$ for all places $v \neq 2$, each H_{i} is locally solvable at $v \neq 2$. By the product formula of Hilbert symbols, H_{i} is locally solvable at 2. In other words,

$$
\left[n d_{2}, d_{2} d_{3}\right]_{2}=\left[-n d_{1}, d_{3} d_{1}\right]_{2}=\left[2 n d_{2}, d_{1} d_{2}\right]_{2}=0
$$

Then $\left[n d_{2}, d_{1}\right]_{2}=\left[-n d_{1}, d_{2}\right]_{2}=0$.

- If $d_{1} \equiv d_{2} \bmod 4$, then $\left[-n, d_{1}\right]_{2}=\left[n, d_{2}\right]_{2}=\left[2, d_{1} d_{2}\right]_{2}=0$, which forces $4 \mid d_{1}-1$ and $8 \mid d_{1}-d_{2}$.
- If $d_{1} \equiv-d_{2} \bmod 4$, then $\left[n, d_{1}\right]_{2}=\left[-n,-d_{1}\right]_{2}=0$ and $n \equiv-d_{1} \equiv d_{2} \bmod$ 4. Since $\left[2, d_{1} d_{2}\right]_{2}=\left[2 n d_{2}, d_{1} d_{2}\right]_{2}=0$, we have $d_{1} d_{2} \equiv-1 \bmod 8$. In other words, $4 \mid d_{1}+n$ and $8 \mid d_{1}-d_{2}+2 n$.
Hence $D_{\Lambda}\left(\mathbb{Q}_{2}\right) \neq \emptyset$ by Lemma 3.4(3).
3.2. Matrix representation. By the results in the previous subsection, we can express the pure 2-Selmer group $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ as the kernel of a matrix. For our purpose, we assume that n is prime to $a b c$ and each prime factor of n is a quadratic residue modulo every prime factor of $a b c$.

Denote by $n=p_{1} \cdots p_{k}$ and

$$
\begin{equation*}
a=q_{1}^{t_{1}} \cdots q_{\ell_{1}}^{t_{\ell_{1}}}, \quad b=q_{\ell_{1}+1}^{t_{\ell_{1}+1}} \cdots q_{\ell_{2}}^{t_{\ell_{2}}}, \quad c=q_{\ell_{2}+1}^{t_{\ell_{2}+1}} \cdots q_{\ell}^{t_{\ell}} \tag{3.1}
\end{equation*}
$$

the prime decompositions respectively, where all $t_{i}>0$ and $0 \leqslant \ell_{1} \leqslant \ell_{2} \leqslant \ell$. Let $\Lambda=\left(d_{1}, d_{2}, d_{3}\right) \in \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ where d_{1}, d_{2}, d_{3} are positive square-free integers dividing nabc. By Lemma 3.3, we have $\operatorname{gcd}\left(a, d_{2}\right)=\operatorname{gcd}\left(b, d_{1}\right)=\operatorname{gcd}\left(c, d_{3}\right)=1$. In other words, $d_{1}\left|n a c, d_{2}\right| n b c$ and $d_{3} \mid n a b$. So we may write

$$
\begin{aligned}
d_{1} & =p_{1}^{x_{1}} \cdots p_{k}^{x_{k}} \cdot q_{1}^{z_{1}} \cdots q_{\ell_{1}}^{z_{\ell_{1}}} \cdot q_{\ell_{2}+1}^{z_{\ell_{2}+1}} \cdots q_{\ell}^{z_{\ell}} \\
d_{2} & =p_{1}^{y_{1}} \cdots p_{k}^{y_{k}} \cdot q_{\ell_{1}+1}^{z_{\ell_{1}+1}} \cdots q_{\ell_{2}}^{z_{\ell_{2}}} \cdot q_{\ell_{2}+1}^{z_{\ell_{2}+1}} \cdots q_{\ell}^{z_{\ell}} \\
d_{3} & \equiv p_{1}^{x_{1}+y_{1}} \cdots p_{k}^{x_{1}+y_{k}} \cdot q_{1}^{z_{1}} \cdots q_{\ell_{1}}^{z_{\ell_{1}}} \cdot q_{\ell_{1}+1}^{z_{\ell_{1}+1}} \cdots q_{\ell_{2}}^{z_{\ell_{2}}} \bmod \mathbb{Q}^{\times 2}
\end{aligned}
$$

Denote by

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)^{\mathrm{T}}, \quad \mathbf{y}=\left(y_{1}, \ldots, y_{k}\right)^{\mathrm{T}} \in \mathbb{F}_{2}^{k}
$$

and

$$
\mathbf{z}=\left(z_{1}, \ldots, z_{\ell_{1}}, z_{\ell_{1}+1}, \ldots, z_{\ell_{2}}, z_{\ell_{2}+1}, \ldots, z_{\ell}\right)^{\mathrm{T}} \in \mathbb{F}_{2}^{\ell}
$$

Denote by

$$
\left(\begin{array}{lll}
\mathbf{F}_{1} & \mathbf{F}_{2} & \mathbf{F}_{3} \\
\mathbf{F}_{4} & \mathbf{F}_{5} & \mathbf{F}_{6} \\
\mathbf{F}_{7} & \mathbf{F}_{8} & \mathbf{F}_{9}
\end{array}\right)=\left(\left[q_{j}, q_{i}\right]_{q_{i}}\right)_{i, j} \in M_{\ell}\left(\mathbb{F}_{2}\right)
$$

where $\mathbf{F}_{1} \in M_{\ell_{1}}\left(\mathbb{F}_{2}\right)$ and $\mathbf{F}_{5} \in M_{\ell_{2}-\ell_{1}}\left(\mathbb{F}_{2}\right)$. Denote by

$$
\mathcal{M}_{1}=\left(\begin{array}{ccc}
& \mathbf{F}_{2} & \mathbf{F}_{3} \\
\mathbf{F}_{4} & & \mathbf{F}_{6} \\
\mathbf{F}_{7} & \mathbf{F}_{8} & \\
& \Delta &
\end{array}\right) \in M_{\left(\ell+\ell_{2}-\ell_{1}\right) \times \ell}\left(\mathbb{F}_{2}\right)
$$

where

$$
\Delta=\operatorname{diag}\left(\left[\frac{-1}{q_{\ell_{1}+1}}\right], \cdots,\left[\frac{-1}{q_{\ell_{2}}}\right]\right)
$$

Lemma 3.5. Notations as above. The map $\left(d_{1}, d_{2}, d_{3}\right) \mapsto \mathbf{z}$ induces an isomorphism

$$
\operatorname{Sel}_{2}^{\prime}(E) \xrightarrow{\sim} \operatorname{Ker} \mathcal{M}_{1}
$$

Proof. In the language of linear algebra, Lemma 3.3 tells that
(1) $\left(\mathbf{O}, \mathbf{F}_{2}, \mathbf{F}_{3}\right) \mathbf{z}=\mathbf{0}$;
(2) $\left(\mathbf{F}_{4}, \mathbf{O}, \mathbf{F}_{6}\right) \mathbf{z}=\mathbf{0}$ and $\Delta\left(z_{\ell_{1}+1}, \ldots, z_{\ell_{2}}\right)^{\mathrm{T}}=\mathbf{0}$;
(3) $\left(\mathbf{F}_{7}, \mathbf{F}_{8}, \mathbf{O}\right) \mathbf{z}=\mathbf{0}$.

The result then follows from Lemmas 3.1 (4) and 3.4 by noting that $n=1$.
Denote by

$$
\begin{align*}
\mathbf{D}_{u} & =\operatorname{diag}\left\{\left[\frac{u}{p_{1}}\right], \cdots,\left[\frac{u}{p_{k}}\right]\right\} \in M_{k}\left(\mathbb{F}_{2}\right), \\
\mathbf{A} & =\mathbf{A}_{n}=\left(\left[p_{j},-n\right]_{p_{i}}\right)_{i, j} \in M_{k}\left(\mathbb{F}_{2}\right) \tag{3.2}
\end{align*}
$$

and

$$
\left(\mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3}\right)=\left(\left[q_{j},-n\right]_{p_{i}}\right)_{i, j} \in M_{k \times \ell}\left(\mathbb{F}_{2}\right)
$$

where $\mathbf{G}_{1} \in M_{k \times \ell_{1}}\left(\mathbb{F}_{2}\right)$ and $\mathbf{G}_{2} \in M_{k \times\left(\ell_{2}-\ell_{1}\right)}\left(\mathbb{F}_{2}\right)$. Denote the Monsky matrix by

$$
\mathbf{M}_{n}=\left(\begin{array}{cc}
\mathbf{A}+\mathbf{D}_{-2} & \mathbf{D}_{2} \tag{3.3}\\
\mathbf{D}_{2} & \mathbf{A}+\mathbf{D}_{2}
\end{array}\right)
$$

and the generalized Monsky matrix by

$$
\mathcal{M}_{n}=\left(\begin{array}{cc}
\mathbf{M}_{n} & \mathbf{G} \tag{3.4}\\
& \mathcal{M}_{1}
\end{array}\right), \quad \text { where } \quad \mathbf{G}=\left(\begin{array}{ccc}
\mathbf{G}_{1} & & \mathbf{G}_{3} \\
& \mathbf{G}_{2} & \mathbf{G}_{3}
\end{array}\right)
$$

See [HB94, Appendix].
Proposition 3.6. Notations as above. The map $\left(d_{1}, d_{2}, d_{3}\right) \mapsto\left(\begin{array}{l}\mathbf{x} \\ \mathbf{y} \\ \mathbf{z}\end{array}\right)$ induces an isomorphism

$$
\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right) \xrightarrow{\sim} \operatorname{Ker} \mathcal{M}_{n}
$$

Proof. This follows from Lemmas 3.1(4), 3.2, 3.3, 3.4 and 3.5 with $\left(\frac{n}{q}\right)=1$.

4. Second minimal Shafarevich-Tate group

In this section, $n=p_{1} \cdots p_{k} \equiv 1 \bmod 8$ is a positive square-free integer prime to $a b c$ where each p_{i} is a quadratic residue modulo every prime factor of $a b c$.

4.1. Proof of Theorem 1.1(A).

Lemma 4.1. Assume that each $p_{i} \equiv \pm 1 \bmod 8$. Let $\mathbf{d}=\left(s_{1}, \cdots, s_{k}\right)^{\mathrm{T}}$ be a column vector in \mathbb{F}_{2}^{k} and $d=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$.
(1) $\mathbf{d} \in \operatorname{Ker}\left(\mathbf{A}+\mathbf{D}_{-1}\right)$ if and only if $\mathbf{d}+\left[\frac{-1}{d}\right] \mathbf{1} \in \operatorname{Ker} \mathbf{A}^{\mathrm{T}}$.
(2) Assume that $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Then $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)=2$ if and only if $h_{4}(n)=1$. In which case, $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is generated by $(2,2,1)$ and $(d, 1, d)$, where $\operatorname{Ker}\left(\mathbf{A}+\mathbf{D}_{-1}\right)=\{\mathbf{0}, \mathbf{d}\}$.
Proof. (1) We may rearrange the ordering of the prime factors p_{i} such that $p_{1} \equiv$ $\cdots \equiv p_{k^{\prime}} \equiv-1 \bmod 8$ and $p_{k^{\prime}+1} \equiv \cdots \equiv p_{k} \equiv 1 \bmod 8$. Then $\mathbf{b}_{-1}=\binom{\mathbf{1}^{\prime}}{\mathbf{0}}$, where $\mathbf{1}^{\prime} \in \mathbb{F}_{2}^{k^{\prime}}$. By the quadratic reciprocity law, one can show that

$$
\mathbf{A}^{\mathrm{T}}=\mathbf{A}+\mathbf{D}_{-1}+\mathbf{b}_{-1} \mathbf{b}_{-1}^{\mathrm{T}}
$$

Since $n \equiv 1 \bmod 8, k^{\prime}$ is even and $\mathbf{b}_{-1}^{\mathrm{T}} \mathbf{1}=\mathbf{1}^{\mathrm{T}} \mathbf{b}_{-1}=\mathbf{b}_{-1}^{\mathrm{T}} \mathbf{b}_{-1}=k^{\prime}=0 \in \mathbb{F}_{2}$. Since $\mathbf{A 1}=\mathbf{0}$, we have

$$
\mathbf{A}^{\mathrm{T}} \mathbf{1}=\left(\mathbf{A}+\mathbf{D}_{-1}+\mathbf{b}_{-1} \mathbf{b}_{-1}^{\mathrm{T}}\right) \mathbf{1}=\mathbf{b}_{-1}
$$

and

$$
\mathbf{A}^{\mathrm{T}}\left(\mathbf{I}+\mathbf{1} \mathbf{b}_{-1}^{\mathrm{T}}\right)=\mathbf{A}^{\mathrm{T}}+\mathbf{b}_{-1} \mathbf{b}_{-1}^{\mathrm{T}}=\mathbf{A}+\mathbf{D}_{-1}
$$

Hence $\mathbf{d} \in \operatorname{Ker}\left(\mathbf{A}+\mathbf{D}_{-1}\right)$ if and only if

$$
\left(\mathbf{I}+\mathbf{1} \mathbf{b}_{-1}^{\mathrm{T}}\right) \mathbf{d}=\mathbf{d}+\left(\mathbf{b}_{-1}^{\mathrm{T}} \mathbf{d}\right) \mathbf{1}=\mathbf{d}+\left[\frac{-1}{d}\right] \mathbf{1} \in \operatorname{Ker} \mathbf{A}^{\mathrm{T}}
$$

(2) Since $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}^{\prime}(E)=0$, we have Ker $\mathcal{M}_{1}=0$ by Lemma 3.5. By Proposition 3.6, $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)=2$ if and only if the rank of

$$
\mathbf{M}_{n}=\operatorname{diag}\left\{\mathbf{A}+\mathbf{D}_{-1}, \mathbf{A}\right\}
$$

is $2 k-2$. By (1), we have $\operatorname{rank} \mathbf{A}=\operatorname{rank}\left(\mathbf{A}+\mathbf{D}_{-1}\right)$ and then

$$
\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)=2 \Longleftrightarrow \operatorname{rank} \mathbf{A}=k-1
$$

Note that the Rédei matrix of $\mathbb{Q}(\sqrt{-n})$ is $\mathbf{R}_{n}=(\mathbf{A}, \mathbf{0})$. Then $h_{4}(n)=1$ if and only if $\operatorname{rank} \mathbf{A}=k-1$ by Proposition 2.1.

If rank $\mathbf{A}=k-1$, then $\operatorname{Ker} \mathbf{A}=\{\mathbf{0}, \mathbf{1}\}$. Hence

$$
\operatorname{Ker} \mathcal{M}_{n}=\left\{\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right),\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right),\left(\begin{array}{l}
\mathbf{d} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right),\left(\begin{array}{l}
\mathbf{d} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right)\right\}
$$

In other words, $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is generated by $(1, n, n)$ and $(d, 1, d)$. Conclude the result by the fact that $(1, n, n)-(2,2,1)=(2,2 n, n)$ corresponds a torsion, see (2.3).

Theorem 4.2. Assume that $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Let n be a positive square-free integer prime to abc where each prime factor of n is a quadratic residue modulo every prime factor of abc. If all prime factors of $n \equiv 1 \bmod 8$ are congruent to ± 1 modulo 8, then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} E^{(n)}(\mathbb{Q})=0$ and $\amalg\left(E^{(n)} / \mathbb{Q}\right)\left[2^{\infty}\right] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$;
(2) $h_{4}(n)=1$ and $h_{8}(n)=0$.

Proof. By Lemma 2.6, (1) is equivalent to say, $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ has dimension 2 and the Cassels pairing on it is non-degenerate. By Lemma 4.1(2), $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)=2$ if and only if $h_{4}(n)=1$.

Since all prime factors of n are congruent to ± 1 modulo 8,2 is a norm and there exists a primitive triple (α, β, γ) of positive integers such that

$$
\alpha^{2}+n \beta^{2}=2 \gamma^{2}
$$

It's easy to see that all of α, β, γ are odd.
Assume that $h_{4}(n)=1$. Then by Lemma $4.1(2), \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is generated by $\Lambda=(2,2,1)$ and $\Lambda^{\prime}=(d, 1, d)$. Recall that D_{Λ} is

$$
\begin{cases}H_{1}: & -b^{2} n t^{2}+2 u_{2}^{2}-u_{3}^{2}=0 \\ H_{2}: & -a^{2} n t^{2}+u_{3}^{2}-2 u_{1}^{2}=0 \\ H_{3}: & c^{2} n t^{2}+u_{1}^{2}-u_{2}^{2}=0\end{cases}
$$

Choose

$$
\begin{array}{ll}
Q_{1}=(\beta, b \gamma, b \alpha) \in H_{1}(\mathbb{Q}), & L_{1}=b n \beta t-2 \gamma u_{2}+\alpha u_{3} \\
Q_{3}=(0,1,1) \in H_{3}(\mathbb{Q}), & L_{3}=u_{1}-u_{2}
\end{array}
$$

By Lemma 2.5, we have

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\sum_{p \mid 2 n a b c}\left[L_{1} L_{3}\left(P_{p}\right), d\right]_{p}
$$

for any $P_{p} \in D_{\Lambda}\left(\mathbb{Q}_{p}\right)$. Since $\left(\frac{p_{i}}{q}\right)=1$ for any prime $q \mid a b c$, we have $\left(\frac{d}{q}\right)=1$ and $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{q}=0$.

For $p \mid n, \alpha^{2} \equiv 2 \gamma^{2} \bmod p$. We may take $\sqrt{2} \in \mathbb{Q}_{p}$ such that $\sqrt{2} \gamma \equiv \alpha \bmod p$. Take $P_{p}=\left(t, u_{1}, u_{2}, u_{3}\right)=(0,1,-1, \sqrt{2})$, then

$$
L_{1} L_{3}\left(P_{p}\right)=2(2 \gamma+\sqrt{2} \alpha) \equiv 8 \gamma \bmod p
$$

and

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{p}=\left[L_{1} L_{3}\left(P_{p}\right), d\right]_{p}=[\gamma, d]_{p}
$$

Note that $n(b \beta)^{2}-(a \alpha)^{2}=2\left(b^{2} \gamma^{2}-c^{2} \alpha^{2}\right) \equiv 0 \bmod 16$, we may take $\sqrt{n} \in \mathbb{Q}_{2}$ such that $b \beta \sqrt{n} \equiv a \alpha \bmod 8$. Take $P_{2}=(1,0, c \sqrt{n},-a \sqrt{n})$, then

$$
L_{1} L_{3}\left(P_{2}\right)=-c \sqrt{n}(b n \beta-2 c \gamma \sqrt{n}-a \alpha \sqrt{n})=2 c^{2} n \gamma+c n(a \alpha-b \beta \sqrt{n})
$$

and

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{2}=\left[L_{1} L_{3}\left(P_{2}\right), d\right]_{2}=\left[2 c^{2} n \gamma, d\right]_{2}=[\gamma, d]_{2}=\left[\frac{-1}{d}\right]\left[\frac{-1}{\gamma}\right]
$$

Since $\alpha^{2} \equiv-n \beta^{2} \bmod \gamma$, we have $\left(\frac{-1}{\gamma}\right)=\left(\frac{n}{\gamma}\right)=\left(\frac{\gamma}{n}\right)$. Hence

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\sum_{p \mid n}\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{p}+\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{2}=\left[\frac{\gamma}{d}\right]+\left[\frac{-1}{d}\right]\left[\frac{\gamma}{n}\right]
$$

Since $\mathbf{R}_{n}=(\mathbf{A}, \mathbf{0})$, we have $\mathcal{A}[2] \cap \mathcal{A}^{2}=\{[(1)],[(2, \sqrt{-n})]\}$. Since $\operatorname{Ker} \mathbf{A}^{\mathrm{T}}=$ $\left\{\mathbf{0}, \mathbf{d}+\left[\frac{-1}{d}\right] \mathbf{1}\right\}$ by Lemma 4.1(1), we have

$$
\operatorname{Im} \mathbf{R}_{n}=\operatorname{Im} \mathbf{A}=\left\{\mathbf{u}: \mathbf{u}^{\mathrm{T}}\left(\mathbf{d}+\left[\frac{-1}{d}\right] \mathbf{1}\right)=0\right\}
$$

By Proposition 2.2, $[(2, \sqrt{-n})] \in \mathcal{A}^{4}$ if and only if

$$
\mathbf{b}_{\gamma}=\left(\left[\frac{\gamma}{p_{1}}\right], \ldots,\left[\frac{\gamma}{p_{k}}\right]\right)^{\mathrm{T}} \in \operatorname{Im} \mathbf{R}_{n}
$$

if and only if

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\left[\frac{\gamma}{d}\right]+\left[\frac{-1}{d}\right]\left[\frac{\gamma}{n}\right]=\mathbf{b}_{\gamma}^{\mathrm{T}}\left(\mathbf{d}+\left[\frac{-1}{d}\right] \mathbf{1}\right)=0
$$

In conclusion, the Cassels pairing is non-degenerate if and only if $h_{8}(n)=0$.
4.2. Proof of Theorem 1.1(B).

Lemma 4.3. Assume that each $p_{i} \equiv 1 \bmod 4$ and $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Let $\mathbf{d}=\left(s_{1}, \cdots, s_{k}\right)^{\mathrm{T}}$ be a column vector in \mathbb{F}_{2}^{k} and $d=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$.
(1) $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)=2$ if and only if $h_{4}(n)=1$. In which case, $\operatorname{rank} \mathbf{A}=k-2$ or $k-1$.
(2) If $h_{4}(n)=1$ and $\operatorname{rank} \mathbf{A}=k-2$, then $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is generated by $(d, d, 1)$ and $(-1,1,-1)$, where $\operatorname{Ker} \mathbf{A}=\{\mathbf{0}, \mathbf{1}, \mathbf{d}, \mathbf{d}+\mathbf{1}\}$. Moreover, $d \equiv 5 \bmod 8$.
(3) If $h_{4}(n)=1$ and $\operatorname{rank} \mathbf{A}=k-1$, then $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is generated by $(2 d, 2 d, 1)$ and $(-1,1,-1)$, where $\mathbf{A d}=\mathbf{b}_{2}$.

Proof. Similar to the proof of Lemma 4.1(2), we have $\operatorname{Ker} \mathcal{M}_{1}=0$. It suffices to show that $\operatorname{rank} \mathbf{M}_{n}=2 k-2$ if and only if the Rédei matrix $\mathbf{R}_{n}=\left(\mathbf{A}, \mathbf{b}_{2}\right)$ has rank $k-1$ by Proposition 2.1. Since $\mathbf{A 1}=\mathbf{0}$, we have $\operatorname{rank} \mathbf{A} \leqslant k-1$. If $\operatorname{rank} \mathbf{M}_{n}=2 k-2$, then

$$
2 k-2=\operatorname{rank}\left(\begin{array}{cc}
\mathbf{A}+\mathbf{D}_{2} & \mathbf{D}_{2} \\
\mathbf{D}_{2} & \mathbf{A}+\mathbf{D}_{2}
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cc}
\mathbf{A} & \mathbf{D}_{2} \\
& \mathbf{A}
\end{array}\right) \leqslant k+\operatorname{rank} \mathbf{A}
$$

and $\operatorname{rank} \mathbf{A} \geqslant k-2$. If $\operatorname{rank} \mathbf{R}_{n}=k-1$, then clearly $\operatorname{rank} \mathbf{A} \geqslant k-2$.
Suppose that $\operatorname{rank} \mathbf{A}=k-2$. If $\operatorname{rank} \mathbf{M}_{n}=2 k-2$, then $\mathbf{b}_{2} \notin \operatorname{Im} \mathbf{A}$. Otherwise assume that $\mathbf{A} \mathbf{a}=\mathbf{b}_{2}$, then

$$
\operatorname{Ker} \mathbf{M}_{n} \supseteq\left\{\binom{\mathbf{u}}{\mathbf{u}},\binom{\mathbf{u}+\mathbf{a}}{\mathbf{u}+\mathbf{a}+\mathbf{1}}: \mathbf{u} \in \operatorname{Ker} \mathbf{A}\right\}
$$

has at least 8 elements, which is impossible. Therefore, $\operatorname{rank} \mathbf{R}_{n}=\operatorname{rank}\left(\mathbf{A}, \mathbf{b}_{2}\right)=$ $k-1$. Conversely, if $\operatorname{rank} \mathbf{R}_{n}=k-1$, then $\mathbf{b}_{2} \notin \operatorname{Im} \mathbf{A}$. Since $n \equiv 1 \bmod 8$, we have $\mathbf{1}^{\mathrm{T}} \mathbf{b}_{2}=0$. Note that \mathbf{A} is symmetric, we have

$$
\operatorname{Im} \mathbf{A}=\left\{\mathbf{u}: \mathbf{1}^{\mathrm{T}} \mathbf{u}=\mathbf{d}^{\mathrm{T}} \mathbf{u}=0\right\}
$$

$\mathbf{d}^{\mathrm{T}} \mathbf{b}_{2}=1$ and $\mathbf{1}^{\mathrm{T}} \mathbf{D}_{2}(\mathbf{d}+\mathbf{1})=\mathbf{1}^{\mathrm{T}} \mathbf{D}_{2} \mathbf{d}=\mathbf{b}_{2}^{\mathrm{T}} \mathbf{d}=1$. Hence $\mathbf{D}_{2} \mathbf{1}, \mathbf{D}_{2} \mathbf{d}, \mathbf{D}_{2}(\mathbf{d}+\mathbf{1}) \notin$ $\operatorname{Im} \mathbf{A}$. If $\binom{\mathbf{x}}{\mathbf{y}} \in \operatorname{Ker} \mathbf{M}_{n}$, then $\mathbf{x}+\mathbf{y} \in \operatorname{Ker} \mathbf{A}$ and $\mathbf{D}_{2}(\mathbf{x}+\mathbf{y})=\mathbf{A} \mathbf{x}$. This forces $\mathbf{x}+\mathbf{y}=\mathbf{0}$ and $\mathbf{x}=\mathbf{y} \in \operatorname{Ker} \mathbf{A}$. Hence $\# \operatorname{Ker} \mathbf{M}_{n}=\# \operatorname{Ker} \mathbf{A}=4$ and $\operatorname{rank} \mathbf{M}_{n}=2 k-2$. In this case,

$$
\operatorname{Ker} \mathcal{M}_{n}=\left\{\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right),\left(\begin{array}{l}
\mathbf{1} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right),\left(\begin{array}{l}
\mathbf{d} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right),\left(\begin{array}{c}
\mathbf{d}+\mathbf{1} \\
\mathbf{d}+\mathbf{1} \\
\mathbf{0}
\end{array}\right)\right\}
$$

In other words, $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is generated by $(n, n, 1)$ and $(d, d, 1)$. Since $\mathbf{d}^{\mathrm{T}} \mathbf{b}_{2}=1$, we have $\left(\frac{2}{d}\right)=1$ and $d \equiv 5 \bmod 8$.

Suppose that $\operatorname{rank} \mathbf{A}=k-1$. Then $\operatorname{Ker} \mathbf{A}=\{\mathbf{0}, \mathbf{1}\}$ and $\operatorname{Im} \mathbf{A}=\left\{\mathbf{u}: \mathbf{1}^{\mathrm{T}} \mathbf{u}=0\right\}$. Since $n \equiv 1 \bmod 8$, we have $\mathbf{1}^{\mathrm{T}} \mathbf{b}_{2}=0$ and $\mathbf{b}_{2} \in \operatorname{Im} \mathbf{A}$. Thus $\operatorname{rank} \mathbf{R}_{n}=k-1$, $h_{4}(n)=1$ and

$$
\operatorname{Ker} \mathcal{M}_{n}=\left\{\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right),\left(\begin{array}{l}
\mathbf{1} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right),\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{d}+\mathbf{1} \\
\mathbf{0}
\end{array}\right),\left(\begin{array}{c}
\mathbf{d}+\mathbf{1} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)\right\} .
$$

In this case, $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is generated by $(n, n, 1)$ and $(d, n d, n)$.
Conclude the result by the fact that $(n, n, 1)-(-1,1,-1)=(-n, n,-1)$ and $(d, n d, n)-(2 d, 2 d, 1)=(2,2 n, n)$ correspond torsions, see (2.3).

Theorem 4.4. Assume that $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Let n be a positive square-free integer prime to abc where each prime factor of n is a quadratic residue modulo every prime factor of abc. If all prime factors of $n \equiv 1 \bmod 8$ are congruent to 1 modulo 4, then the following are equivalent:
(1) $\operatorname{rank}_{\mathbb{Z}} E^{(n)}(\mathbb{Q})=0$ and $\amalg\left(E^{(n)} / \mathbb{Q}\right)\left[2^{\infty}\right] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$;
(2) $h_{4}(n)=1$ and $h_{8}(n) \equiv \frac{d-1}{4} \bmod 2$.

Here d is the odd part of $d_{0} \mid 2 n$ such that the ideal class $\left[\left(d_{0}, \sqrt{-n}\right)\right]$ is the non-trivial element in $\mathcal{A}[2] \cap \mathcal{A}^{2}$.

Proof. By Lemma 2.6, (1) is equivalent to say, $\operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ has dimension 2 and the Cassels pairing on it is non-degenerate. By Lemma 4.3(1), $\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)=2$ if and only if $h_{4}(n)=1$. Assume that $h_{4}(n)=1$.
(1) The case $\operatorname{rank} \mathbf{A}=k-2$. By Lemma 4.3(2) and Proposition 2.1, we have $\mathbf{b}_{2} \notin \operatorname{Im} \mathbf{A}$ and $\mathcal{D}(K) \cap \mathbf{N}_{K / \mathbb{Q}} K^{\times}=\{1, n, d, n / d\}$ with $d=d_{0} \equiv 5 \bmod 8$. Denote by $d^{\prime}=n / d \equiv 5 \bmod 8$. Since d is a norm, there exists a primitive triple (α, β, γ) of positive integers such that

$$
d \alpha^{2}+d^{\prime} \beta^{2}=\gamma^{2} .
$$

If α is odd, then β is even and the triple

$$
\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=\left(\left|\frac{\left(d-d^{\prime}\right) \alpha}{2}+d^{\prime} \beta\right|,\left|\frac{\left(d-d^{\prime}\right) \beta}{2}-d \alpha\right|, \frac{\left(d+d^{\prime}\right) \gamma}{2}\right)
$$

is another primitive solution with even α^{\prime}. Thus we may assume that α is even. Then all of $\alpha / 2, \beta, \gamma$ are odd since $d^{\prime} \equiv 5 \bmod 8$.

By Lemma $4.3(2), \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is generated by $\Lambda=(d, d, 1)$ and $\Lambda^{\prime}=(-1,1,-1)$. Recall that D_{Λ} is

$$
\begin{cases}H_{1}: & -b^{2} n t^{2}+d u_{2}^{2}-u_{3}^{2}=0, \\ H_{2}: & -a^{2} n t^{2}+u_{3}^{2}-d u_{1}^{2}=0, \\ H_{3}: & 2 c^{2} d^{\prime} t^{2}+u_{1}^{2}-u_{2}^{2}=0 .\end{cases}
$$

Choose

$$
\begin{array}{ll}
Q_{1}=(\beta, b \gamma, b d \alpha) \in H_{1}(\mathbb{Q}), & L_{1}=b d^{\prime} \beta t-\gamma u_{2}+\alpha u_{3} \\
Q_{3}=(0,1,1) \in H_{3}(\mathbb{Q}), & L_{3}=u_{1}-u_{2}
\end{array}
$$

By Lemma 2.5, we have

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\sum_{p \mid 2 n a b c \infty}\left[L_{1} L_{3}\left(P_{p}\right),-1\right]_{p}
$$

for any $P_{p} \in D_{\Lambda}\left(\mathbb{Q}_{p}\right)$. For each $p \mid n$, we have $p \equiv 1 \bmod 4$ and then $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{p}=0$. Since for any $q \mid c$, we have $-a^{2}=b^{2}-2 c^{2} \equiv b^{2} \bmod q$, we have $q \equiv 1 \bmod 4$ and then $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{q}=0$.

Take $P_{\infty}=\left(t, u_{1}, u_{2}, u_{3}\right)=(0,1,-1, \sqrt{d})$, then

$$
L_{1} L_{3}\left(P_{\infty}\right)=2(\gamma+\alpha \sqrt{d})>0
$$

and

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{\infty}=\left[L_{1} L_{3}\left(P_{\infty}\right),-1\right]_{\infty}=0
$$

Take $P_{2}=\left(2, \sqrt{1-8 c^{2} d^{\prime}}, 1, \sqrt{d-4 b^{2} n}\right)$ where $u_{1} \equiv 3 \bmod 8$. Note that $b d^{\prime} \beta+$ $\alpha u_{3} / 2$ is even. We have

$$
L_{1} L_{3}\left(P_{2}\right)=\left(u_{1}-1\right)\left(2 b d^{\prime} \beta+\alpha u_{3}-\gamma\right)
$$

and

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{2}=\left[L_{1} L_{3}\left(P_{2}\right),-1\right]_{2}=[2,-1]_{2}+[-\gamma,-1]_{2}=\left[\frac{-1}{\gamma}\right]+1
$$

Since $d \alpha^{2} \equiv-d^{\prime} \beta^{2} \bmod \gamma$, we have $\left(\frac{-1}{\gamma}\right)=\left(\frac{n}{\gamma}\right)=\left(\frac{\gamma}{n}\right)$ and $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{2}=\left[\frac{\gamma}{n}\right]+1$.
For $q \mid a b$, take $P_{q}=(0,1,-1, \sqrt{d})$. Since $\gamma^{2}-d \alpha^{2}=d^{\prime} \beta^{2}$, we may choose \sqrt{d} such that $q \mid(\gamma-\alpha \sqrt{d})$ if $q \mid \beta$. Then

$$
L_{1} L_{3}\left(P_{q}\right)=2(\gamma+\alpha \sqrt{d}) \in \mathbb{Z}_{q}^{\times}
$$

and

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{q}=\left[L_{1} L_{3}\left(P_{q}\right),-1\right]_{q}=0
$$

Hence

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{2}=\left[\frac{\gamma}{n}\right]+1
$$

Since $\mathbf{R}_{n}=\left(\mathbf{A}, \mathbf{b}_{2}\right)$, we have $\mathcal{A}[2] \cap \mathcal{A}^{2}=\{[(1)],[(d, \sqrt{-n})]\}$. Since $\mathbf{b}_{2} \notin \operatorname{Im} \mathbf{A}$ and $\mathbf{A 1}=\mathbf{0}$, we have

$$
\operatorname{Im} \mathbf{R}_{n}=\left\{\mathbf{u}: \mathbf{1}^{\mathrm{T}} \mathbf{u}=0\right\}
$$

By Lemma 2.2, $[(d, \sqrt{-n})] \in \mathcal{A}^{4}$ if and only if

$$
\mathbf{b}_{\gamma}=\left(\left[\frac{\gamma}{p_{1}}\right], \ldots,\left[\frac{\gamma}{p_{k}}\right]\right)^{\mathrm{T}} \in \operatorname{Im} \mathbf{R}_{n}
$$

if and only if

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\left[\frac{\gamma}{n}\right]+1=\mathbf{1}^{\mathrm{T}} \mathbf{b}_{\gamma}+1=1
$$

In conclusion, the Cassels pairing is non-degenerate if and only if $h_{8}(n)=1=\left[\frac{2}{d}\right]$.
(2) The case $\operatorname{rank} \mathbf{A}=k-1$. By Lemma 4.3(3) and Proposition 2.1, we have $\mathbf{b}_{2} \in \operatorname{Im} \mathbf{A}$ and $\mathcal{D}(K) \cap \mathbf{N}_{K / \mathbb{Q}} K^{\times}=\{1, n, 2 d, 2 n / d\}$. Denote by $d^{\prime}=n / d$. Since $d_{0}=2 d$ is a norm, there exists a primitive triple (α, β, γ) of positive integers such that

$$
d \alpha^{2}+d^{\prime} \beta^{2}=2 \gamma^{2}
$$

It's easy to see that all of α, β, γ are odd.
By Lemma $4.3(3), \operatorname{Sel}_{2}^{\prime}\left(E^{(n)}\right)$ is generated by $\Lambda=(2 d, 2 d, 1)$ and $\Lambda^{\prime}=(-1,1,-1)$. Recall that D_{Λ} is

$$
\begin{cases}H_{1}: & -b^{2} n t^{2}+2 d u_{2}^{2}-u_{3}^{2}=0 \\ H_{2}: & -a^{2} n t^{2}+u_{3}^{2}-2 d u_{1}^{2}=0 \\ H_{3}: & c^{2} d^{\prime} t^{2}+u_{1}^{2}-u_{2}^{2}=0\end{cases}
$$

Choose

$$
\begin{array}{ll}
Q_{1}=(\beta, b \gamma, b d \alpha) \in H_{1}(\mathbb{Q}), & L_{1}=b d^{\prime} \beta t-2 \gamma u_{2}+\alpha u_{3} \\
Q_{3}=(0,1,1) \in H_{3}(\mathbb{Q}), & L_{3}=u_{1}-u_{2}
\end{array}
$$

Similar to the case $\operatorname{rank} \mathbf{A}=k-2$, we have

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\sum_{p \mid 2 a b \infty}\left[L_{1} L_{3}\left(P_{p}\right),-1\right]_{p}
$$

for any $P_{p} \in D_{\Lambda}\left(\mathbb{Q}_{p}\right)$.
For $p=\infty$, take $P_{\infty}=(0,1,-1, \sqrt{2 d})$. Then

$$
L_{1} L_{3}\left(P_{\infty}\right)=2(2 \gamma+\alpha \sqrt{2 d})>0
$$

and

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{\infty}=\left[L_{1} L_{3}\left(P_{\infty}\right),-1\right]_{\infty}=0
$$

For $p=2$, take $P_{2}=\left(t, u_{1}, u_{2}, u_{3}\right)$ where

$$
t=1, u_{1}=2\left[\frac{2}{d}\right], u_{2}^{2}=c^{2} d^{\prime}+u_{1}^{2}, u_{3}^{2}=a^{2} n+2 d u_{1}^{2}
$$

with $\gamma u_{2} \equiv 1 \bmod 4$. Since

$$
\begin{aligned}
& \left(b d^{\prime} \beta+\alpha u_{3}\right)\left(b d^{\prime} \beta-\alpha u_{3}\right)=b^{2} d^{2} \beta^{2}-\alpha^{2}\left(a^{2} n+2 d u_{1}^{2}\right) \\
= & b^{2} d^{\prime}\left(2 \gamma^{2}-d \alpha^{2}\right)-\alpha^{2}\left(a^{2} n+2 d u_{1}^{2}\right)=2 b^{2} d^{\prime} \gamma^{2}-\alpha^{2}\left(2 c^{2} n+2 d u_{1}^{2}\right) \\
= & 2\left(\left(b d^{\prime} \gamma\right)^{2}-n \alpha^{2} u_{2}^{2}\right) / d^{\prime} \equiv 0 \bmod 16,
\end{aligned}
$$

we may choose u_{3} such that $8 \mid b d^{\prime} \beta+\alpha u_{3}$. Then

$$
\begin{aligned}
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{2} & =\left[L_{1} L_{3}\left(P_{2}\right),-1\right]_{2}=\left[\left(u_{1}-u_{2}\right)\left(b d^{\prime} \beta+\alpha u_{3}-2 \gamma u_{2}\right),-1\right]_{2} \\
& =\left[-2 \gamma u_{2}\left(u_{1}-u_{2}\right),-1\right]_{2}=[2,-1]_{2}+\left[u_{2}-u_{1},-1\right]_{2} \\
& =[\gamma,-1]_{2}+\left[1-u_{1} \gamma,-1\right]_{2} \\
& =\left[\frac{-1}{\gamma}\right]+\left[1-2\left[\frac{2}{d}\right],-1\right]_{2}=\left[\frac{-1}{\gamma}\right]+\left[\frac{2}{d}\right] .
\end{aligned}
$$

Since $d \alpha^{2} \equiv-d^{\prime} \beta^{2} \bmod \gamma$, we have $\left(\frac{-1}{\gamma}\right)=\left(\frac{n}{\gamma}\right)=\left(\frac{\gamma}{n}\right)$ and $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{2}=\left[\frac{\gamma}{n}\right]+\left[\frac{2}{d}\right]$.
For $q \mid a$, take $P_{q}=\left(1,0, u_{2}, a \sqrt{n}\right)$ where $u_{2}^{2}=c^{2} d^{\prime}$. Since

$$
\begin{aligned}
& \left(b d^{\prime} \beta-2 \gamma u_{2}\right)\left(b d^{\prime} \beta+2 \gamma u_{2}\right)=b^{2} d^{\prime 2} \beta^{2}-4 c^{2} d^{\prime} \gamma^{2} \\
\equiv & 2 c^{2} d^{\prime}\left(d^{\prime} \beta^{2}-2 \gamma^{2}\right)=-2 c^{2} n \alpha^{2} \bmod q
\end{aligned}
$$

we may choose u_{2} such that $q \mid b d^{\prime} \beta+2 \gamma u_{2}$ if $q \mid \alpha$. If $q \mid b d^{\prime} \beta \pm 2 \gamma u_{2}$, then $q \mid \beta$, which contradicts to the primitivity of (α, β, γ). Therefore, $q \nmid b d^{\prime} \beta-2 \gamma u_{2}$. If $q \nmid \alpha$, clearly we have $q \nmid b d^{\prime} \beta \pm 2 \gamma u_{2}$. Then

$$
L_{1} L_{3}\left(P_{q}\right)=-u_{2}\left(b d^{\prime} \beta-2 \gamma u_{2}+a \alpha \sqrt{n}\right) \in \mathbb{Z}_{q}^{\times}
$$

and

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{q}=\left[L_{1} L_{3}\left(P_{q}\right),-1\right]_{q}=0
$$

Similarly, $\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{q}=0$ for $q \mid b$. Hence

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\left\langle\Lambda, \Lambda^{\prime}\right\rangle_{2}=\left[\frac{\gamma}{n}\right]+\left[\frac{2}{d}\right]
$$

Since $\mathbf{R}_{n}=\left(\mathbf{A}, \mathbf{b}_{2}\right)$, we have $\mathcal{A}[2] \cap \mathcal{A}^{2}=\{[(1)],[(2 d, \sqrt{-n})]\}$. Since $\mathbf{b}_{2} \in \operatorname{Im} \mathbf{A}$, we have

$$
\operatorname{Im} \mathbf{R}_{n}=\operatorname{Im} \mathbf{A}=\left\{\mathbf{u}: \mathbf{1}^{\mathrm{T}} \mathbf{u}=0\right\}
$$

By Lemma $2.2,[(2 d, \sqrt{-n})] \in \mathcal{A}^{4}$ if and only if

$$
\mathbf{b}_{\gamma}=\left(\left[\frac{\gamma}{p_{1}}\right], \ldots,\left[\frac{\gamma}{p_{k}}\right]\right)^{\mathrm{T}} \in \operatorname{Im} \mathbf{R}_{n}
$$

if and only if

$$
\left\langle\Lambda, \Lambda^{\prime}\right\rangle=\left[\frac{\gamma}{n}\right]+\left[\frac{2}{d}\right]=\mathbf{1}^{\mathrm{T}} \mathbf{b}_{\gamma}+\left[\frac{2}{d}\right]=\left[\frac{2}{d}\right]
$$

In conclusion, the Cassels pairing is non-degenerate if and only if $h_{8}(n)=\left[\frac{2}{d}\right]$.

5. EQUidistribution of Residue symbols

5.1. Residue symbols.

Definition 5.1. Denote by $I=\sqrt{-1}$ and $\mathbb{Z}[I]$ the ring of Gauss integers.
(1) A prime element λ of $\mathbb{Z}[I]$ is called Gaussian if it is not a rational prime.
(2) An integer $\lambda \in \mathbb{Z}[I]$ is called primary if $\lambda \equiv 1 \bmod (2+2 I)$.

Recall the quadratic and quartic residue symbols on $\mathbb{Z}[I]$, see [Hec81, p. 196] and [IR90]. Denote by $\mathbf{N}=\mathbf{N}_{\mathbb{Q}(I) / \mathbb{Q}}$ the norm from $\mathbb{Q}(I)$ to \mathbb{Q}. For any $\alpha \in \mathbb{Z}[I]$ and prime element λ prime to $1+I$, define

$$
\begin{equation*}
\left(\frac{\alpha}{\lambda}\right)_{2} \in\{0, \pm 1\} \quad \text { such that } \quad\left(\frac{\alpha}{\lambda}\right)_{2} \equiv \alpha^{\frac{\mathbf{N} \lambda-1}{2}} \bmod \lambda \tag{5.1}
\end{equation*}
$$

For any element λ prime to $1+I$ with a prime decomposition $\lambda=\prod_{i=1}^{k} \lambda_{k}$, define $\left(\frac{\alpha}{\lambda}\right)_{2}=\prod_{i=1}^{k}\left(\frac{\alpha}{\lambda_{i}}\right)_{2}$.

For any $\alpha \in \mathbb{Z}[I]$ and primary prime λ, define

$$
\begin{equation*}
\left(\frac{\alpha}{\lambda}\right)_{4} \in\{0, \pm 1, \pm I\} \quad \text { such that } \quad\left(\frac{\alpha}{\lambda}\right)_{4} \equiv \alpha^{\frac{\mathrm{N} \lambda-1}{4}} \bmod \lambda \tag{5.2}
\end{equation*}
$$

For any primary element λ with a primary prime decomposition $\lambda=\prod_{i=1}^{k} \lambda_{k}$, define $\left(\frac{\alpha}{\lambda}\right)_{4}=\prod_{i=1}^{k}\left(\frac{\alpha}{\lambda_{i}}\right)_{4}$. Let λ and λ^{\prime} be two coprime primary primes. Then we have the quartic reciprocity law

$$
\left(\frac{\lambda}{\lambda^{\prime}}\right)_{4}=\left(\frac{\lambda^{\prime}}{\lambda}\right)_{4}(-1)^{\frac{\mathrm{N} \lambda-1}{4} \cdot \frac{\mathrm{~N} \lambda^{\prime}-1}{4}}
$$

Certainly, $\left(\frac{\alpha}{\lambda}\right)_{2}=\left(\frac{\alpha}{\lambda}\right)_{4}^{2}$.
Let $p \equiv 1 \bmod 4$ be a rational prime. Let a be a rational integer such that $\left(\frac{a}{p}\right)=1$. By abuse of notations, we define

$$
\begin{equation*}
\left(\frac{a}{p}\right)_{4}:=\left(\frac{a}{\lambda}\right)_{4} \tag{5.3}
\end{equation*}
$$

where λ is a primary prime such that $\mathbf{N} \lambda=p$. For any rational integer $d=p_{1} \cdots p_{k}$ with $p_{i} \equiv 1 \bmod 4$, define $\left(\frac{a}{d}\right)_{4}=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right)_{4}$.
5.2. Analytic results. Let F be a number field with degree n, discriminant Δ and ring of integers \mathcal{O}. Denote by $\mathbf{N}=\mathbf{N}_{F / \mathbb{Q}}$ the norm from F to \mathbb{Q}.

For an ideal \mathfrak{f} of \mathcal{O}, denote by $I(\mathfrak{f})$ the group of fractional ideals prime to \mathfrak{f} and $P_{\mathfrak{f}}$ the subgroup consisting of principal fractional ideals $(\gamma)=\gamma \mathcal{O}$ with totally real $\gamma \equiv 1 \bmod \mathfrak{f}$. A character χ of $I(\mathfrak{f}) / P_{\mathfrak{f}}$ is called a character modulo \mathfrak{f}. It can be viewed as a character on $I(\mathfrak{f})$. If \mathfrak{a} is a fractional ideal not coprime to \mathfrak{f}, define $\chi(\mathfrak{a})=0$. Denote by

$$
\Lambda(\mathfrak{a})= \begin{cases}\log \mathbf{N} \mathfrak{p} & \text { if } \mathfrak{a}=\mathfrak{p}^{m} \text { with } m \geqslant 1 \tag{5.4}\\ 0 & \text { otherwise }\end{cases}
$$

the Mangoldt function. Define

$$
\begin{equation*}
\psi(x, \chi)=\sum_{\mathbf{N} \mathfrak{a} \leqslant x} \chi(\mathfrak{a}) \Lambda(\mathfrak{a}) . \tag{5.5}
\end{equation*}
$$

Denote by χ_{0} the principal character on $I(\mathfrak{f}) / P_{\mathfrak{f}}$.
Proposition 5.2 ([IK04, p. 112, Exercise 7]). If $\chi \neq \chi_{0}$ is a character modulo \mathfrak{f} and $1 \leqslant T \leqslant x$, then

$$
\psi(x, \chi)=-\sum_{|\operatorname{Im} \rho| \leqslant T} \frac{x^{\rho}-1}{\rho}+O\left(T^{-1} x \log x \log \left(x^{n} \mathbf{N} \mathfrak{f}\right)\right)
$$

Here ρ runs over all the zeros of $L(s, \chi)$ with $0 \leqslant \operatorname{Re} \rho \leqslant 1$.
Similar to the classical process on the estimation of $\psi(x, \chi)$ as in [Dav80, § 19], we derive the following explicit formula

$$
\begin{equation*}
\psi(x, \chi)=-\frac{x^{\beta^{\prime}}}{\beta^{\prime}}+R(x, T) \tag{5.6}
\end{equation*}
$$

with

$$
R(x, T) \ll x \log ^{2}(x \mathbf{N} \mathfrak{f}) \exp \left(-\frac{c_{1} \log x}{\log (T \mathbf{N} \mathfrak{f})}\right)+T^{-1} x \log x \cdot \log \left(x^{n} \mathbf{N} \mathfrak{f}\right)+x^{\frac{1}{4}} \log x .
$$

We also use the estimation on the number of zeroes in [Lan18, Satz LXXI]. Here c_{1} is a positive constant and the term $-\frac{x^{\beta^{\prime}}}{\beta^{\prime}}$ occurs only if χ is a real character such that $L(s, \chi)$ has a zero β^{\prime} satisfying

$$
\beta^{\prime}>1-\frac{c_{2}}{\log \mathbf{N f}}
$$

with c_{2} a positive constant.
The Siegel Theorem over F as follows is [Fog61, Theorem] and [Fog63, Satz].
Proposition 5.3. Let χ be a character modulo an integral \mathfrak{f} and $D=|\Delta| \mathbf{N} \mathfrak{f}>1$.
(1) There is a positive constant $c_{3}=c_{3}(n)$ such that in the region

$$
\operatorname{Re}(s)>1-\frac{c_{3}}{\log D(2+|\operatorname{Im} s|)}>\frac{3}{4}
$$

there is no zero of $L(s, \chi)$ in the case of a complex χ. For at most one real χ^{\prime}, there may be a simple zero β^{\prime} of $L\left(s, \chi^{\prime}\right)$ in this region.
(2) For any $\varepsilon>0$, there exists a positive constant $c_{4}=c_{4}(n, \varepsilon)$ such that

$$
1-\beta^{\prime}>c_{4}(n, \varepsilon) D^{-\varepsilon}
$$

The Page Theorem over F as follows is a special case of [HR95, § 3, Theorem A].

Proposition 5.4. For any $Z \geqslant 2$ and a suitable constant c_{5}, there is at most a real primitive character χ modulo \mathfrak{f} with $\mathbf{N} \mathfrak{f} \leqslant Z$ such that $L(s, \chi)$ has a real zero β satisfying

$$
\beta>1-\frac{c_{5}}{\log Z}
$$

5.3. Equidistribution of residue symbols. Recall that $a b c=q_{1}^{t_{1}} \cdots q_{\ell}^{t_{\ell}}$ is the prime decomposition of $a b c$. Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right)$ be a vector with $\alpha_{i} \in\{1,5,9,13\}$ and $\alpha_{1} \cdots \alpha_{k} \equiv 1 \bmod 8$. Let $\mathbf{B}=\left(B_{i j}\right)_{k \times k} \in M_{k}\left(\mathbb{F}_{2}\right)$ be a symmetric matrix with rank $k-2$ and $\mathbf{B 1}=\mathbf{0}$. Then $\operatorname{Ker} \mathbf{B}=\{\mathbf{0}, \mathbf{1}, \mathbf{d}, \mathbf{d}+\mathbf{1}\}$ for some vector $\mathbf{d}=\left(s_{1}, \cdots, s_{k}\right)^{\mathrm{T}}$ with $s_{k}=0$.

Denote by $C_{k}(x, \alpha, \mathbf{B})$ the set of all $n=p_{1} \cdots p_{k}$ satisfying

- $n \leqslant x$ and $p_{1}<\cdots<p_{k}$;
- $p_{i} \equiv \alpha_{i} \bmod 16$ for all $1 \leqslant i \leqslant k$;
- $\left[\frac{p_{j}}{p_{i}}\right]=B_{i j}$ for all $1 \leqslant i<j \leqslant k$;
- $\left(\frac{p_{i}}{q_{j}}\right)=1$ for all $1 \leqslant i \leqslant k$ and $1 \leqslant j \leqslant \ell$;
- $\left(\frac{d^{\prime}}{d}\right)_{4}\left(\frac{d}{d^{\prime}}\right)_{4}=-1$, where $d=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$ and $d^{\prime}=n / d$,
and denote by $C_{k}^{\prime}(x, \alpha, \mathbf{B})$ the set of all $\eta=\lambda_{1} \cdots \lambda_{k}$ satisfying
- $\mathbf{N} \eta \leqslant x$ and $\mathbf{N} \lambda_{1}<\cdots<\mathbf{N} \lambda_{k} ;$
- $\lambda_{i} \in \mathcal{P}$ and $\mathbf{N} \lambda_{i} \equiv \alpha_{i} \bmod 16$ for all $1 \leqslant i \leqslant k$;
- $\left[\frac{\mathbf{N} \lambda_{j}}{\mathbf{N} \lambda_{i}}\right]=B_{i j}$ for all $1 \leqslant i<j \leqslant k$;
- $\left(\frac{\mathbf{N} \lambda_{i}}{q_{j}}\right)=1$ for all $1 \leqslant i \leqslant k$ and $1 \leqslant j \leqslant \ell$;
- $\left(\frac{\delta^{\prime}}{\delta}\right)_{2}=-1$, where $\delta=\lambda_{1}^{s_{1}} \cdots \lambda_{k}^{s_{k}}$ and $\delta^{\prime}=\eta / \delta$.

Here, \mathcal{P} is the set of primary primes in $\mathbb{Z}[I]$ with positive imaginary part.
In this section, we will give an estimation of the number of $C_{k}(x, \alpha, \mathbf{B})$.
Lemma 5.5. There is a bijection

$$
C_{k}^{\prime}(x, \alpha, \mathbf{B}) \longrightarrow C_{k}(x, \alpha, \mathbf{B}), \quad \eta \mapsto \mathbf{N} \eta
$$

Proof. For any $\eta=\lambda_{1} \cdots \lambda_{k} \in C_{k}^{\prime}(x, \alpha, \mathbf{B})$, denote by $p_{i}=\mathbf{N} \lambda_{i}$. By the quartic reciprocity law, we have

$$
\begin{aligned}
& \left(\frac{p_{i}}{p_{j}}\right)_{4}\left(\frac{p_{j}}{p_{i}}\right)_{4}=\left(\frac{\lambda_{i} \overline{\lambda_{i}}}{\lambda_{j}}\right)_{4}\left(\frac{\lambda_{j} \overline{\lambda_{j}}}{\lambda_{i}}\right)_{4}=\left(\frac{\lambda_{i}}{\lambda_{j}}\right)_{4}\left(\frac{\overline{\lambda_{i}}}{\lambda_{j}}\right)_{4}\left(\frac{\lambda_{j}}{\lambda_{i}}\right)_{4}\left(\frac{\overline{\lambda_{j}}}{\lambda_{i}}\right)_{4} \\
= & \left(\frac{\lambda_{j}}{\lambda_{i}}\right)_{4}\left(\frac{\lambda_{j}}{\overline{\lambda_{i}}}\right)_{4}\left(\frac{\lambda_{j}}{\lambda_{i}}\right)_{4}\left(\frac{\overline{\lambda_{j}}}{\lambda_{i}}\right)_{4}=\left(\frac{\lambda_{j}}{\lambda_{i}}\right)_{2}\left(\frac{\overline{\lambda_{j}}}{\lambda_{i}}\right)_{4}\left(\frac{\overline{\lambda_{j}}}{\lambda_{i}}\right)_{4}=\left(\frac{\lambda_{j}}{\lambda_{i}}\right)_{2} .
\end{aligned}
$$

Therefore,

$$
\left(\frac{d^{\prime}}{d}\right)_{4}\left(\frac{d}{d^{\prime}}\right)_{4}=\left(\frac{\delta^{\prime}}{\delta}\right)_{2}=-1
$$

where $d=\mathbf{N} \delta$ and $d^{\prime}=\mathbf{N} \delta^{\prime}$. Hence $\mathbf{N} \eta \in C_{k}(x, \alpha, \mathbf{B})$.
For any rational prime $p \equiv 1 \bmod 4$, there is exactly one primary prime in \mathcal{P} with norm p. This gives the surjectivity. The injectivity is trivial.

Denote by $T_{k}(x)$ the set of all $n=p_{1} \cdots p_{k-1}$ satisfying

- $n \leqslant x$ and $p_{1}<\cdots<p_{k-1} ;$
- $p_{i} \equiv \alpha_{i} \bmod 16$ for all $1 \leqslant i \leqslant k-1$;
- $\left[\frac{p_{j}}{p_{i}}\right]=B_{i j}$ for all $1 \leqslant i<j \leqslant k-1$;
- $\left(\frac{p_{i}}{q_{j}}\right)=1$ for all $1 \leqslant i \leqslant k-1$ and $1 \leqslant j \leqslant \ell$,
and denote by $T_{k}^{\prime}(x)$ the set of all $\eta=\lambda_{1} \cdots \lambda_{k-1}$ satisfying
- $\mathbf{N} \eta \leqslant x$ and $\mathbf{N} \lambda_{1}<\cdots<\mathbf{N} \lambda_{k-1} ;$
- $\lambda_{i} \in \mathcal{P}$ and $\mathbf{N} \lambda_{i} \equiv \alpha_{i} \bmod 16$ for all $1 \leqslant i \leqslant k-1$;
- $\left[\frac{\mathbf{N} \lambda_{j}}{\mathbf{N} \lambda_{i}}\right]=B_{i j}$ for all $1 \leqslant i<j \leqslant k-1$;
- $\left(\frac{\mathbf{N} \lambda_{i}}{q_{j}}\right)=1$ for all $1 \leqslant i<k$ and $1 \leqslant j \leqslant \ell$.

The independence property of Legendre symbols in [Rho09] implies that

$$
\begin{equation*}
\# T_{k}(x) \sim 2^{-(\ell+3)(k-1)-\binom{k-1}{2}} \cdot \# C_{k-1}(x) \tag{5.7}
\end{equation*}
$$

where $C_{k}(x)$ is the set of all positive square-free integers $n \leqslant x$ with exactly k prime factors.

Lemma 5.6. There is a bijection

$$
T_{k}^{\prime}(x) \longrightarrow T_{k}(x), \quad \eta \mapsto \mathbf{N} \eta
$$

Proof. For any rational prime $p \equiv 1 \bmod 4$, there is exactly one primary prime in \mathcal{P} with norm p. This proves the surjectivity. The injectivity is trivial.
Theorem 5.7. Notations as above with $k>1$. We have

$$
\# C_{k}(x, \alpha, \mathbf{B}) \sim 2^{-k \ell-3 k-1-\binom{k}{2}} \cdot \# C_{k}(x),
$$

where $C_{k}(x)$ is the set of all positive square-free integers $n \leqslant x$ with exactly k prime factors.

Proof. Similar to [CO89], we consider the comparison map

$$
f: C_{k}^{\prime}(x, \alpha, \mathbf{B}) \longrightarrow T_{k}^{\prime}(x), \quad \lambda_{1} \cdots \lambda_{k} \mapsto \lambda_{1} \cdots \lambda_{k-1} .
$$

Let Q_{1} be the product of all primary primes $\mu \in \mathcal{P}$ dividing $a b c$, and Q_{2} the product of all prime $q \mid a b c$ with $q \equiv 3 \bmod 4$. For any $\eta=\lambda_{1} \cdots \lambda_{k-1} \in T_{k}^{\prime}(x)$, denote by $\mathfrak{c}_{\eta}=16 \mathbf{N}\left(\eta Q_{1}\right) Q_{2} \mathbb{Z}[I]$. It's easy to see that if β satisfies

- $\mathbf{N} \beta \equiv \alpha_{k} \bmod 16$;
- $\left[\frac{\mathbf{N} \beta}{\mathbf{N} \lambda_{i}}\right]=B_{i k}$ for all $1 \leqslant i \leqslant k-1$;
- $\left(\frac{\mathbf{N} \beta}{q_{j}}\right)=1$ for all $1 \leqslant j \leqslant \ell$;
- $\left(\frac{\beta}{\delta}\right)_{2}=-\left(\frac{\eta / \delta}{\delta}\right)_{2}$, where $\delta=\lambda_{1}^{s_{1}} \cdots \lambda_{k}^{s_{k}}$,
then so is $\beta^{\prime} \equiv \beta \bmod 16 \mathbf{N}\left(\eta Q_{1}\right) Q_{2}$. Denote by

$$
\mathscr{A}_{\eta} \subseteq\left(\mathbb{Z}[I] / \mathfrak{c}_{\eta}\right)^{\times}
$$

the classes of such β. Then η lies in the image of f if and only if there exists $\theta \in \mathcal{P}$ such that $\mathbf{N} \lambda_{k-1}<\mathbf{N} \theta \leqslant x / \mathbf{N} \eta$ and $\theta \bmod \mathfrak{c}_{\eta} \in \mathscr{A}_{\eta}$ by noting that $s_{k}=0$.

Lemma 5.8. Let $\chi_{1}, \chi_{2}: G \rightarrow \mathbb{F}_{2}$ be two different non-trivial quadratic character on a finite group G. Then the size of $\chi_{1}^{-1}(i) \cap \chi_{2}^{-1}(j)$ is $\# G / 4$ for any $i, j \in \mathbb{F}_{2}$.
Proof. The sizes of $\chi_{1}^{-1}(i)$ and $\chi_{2}^{-1}(j)$ are $\# G / 2$. Since $\chi_{1} \neq \chi_{2}$, these two sets always have a common element, which means that $\left(\chi_{1}, \chi_{2}\right): G \rightarrow \mathbb{F}_{2}^{2}$ is surjective. The result then follows.

Lemma 5.9. Assume that $\pi \in \mathcal{P}$ and $p=\mathbf{N} \pi$. Then $\left(\frac{x}{\pi}\right)_{2}$ and $\left(\frac{\mathbf{N} x}{p}\right)$ are different non-trivial quadratic characters on $(\mathbb{Z}[I] / p \mathbb{Z}[I])^{\times}$.

Proof. Since $\mathbf{N}:(\mathbb{Z}[I] / p \mathbb{Z}[I])^{\times} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\times}$is surjective, $\left(\frac{\mathbf{N} x}{p}\right)$ is non-trivial. Let $\gamma \in \mathbb{Z}[I]$ be an element such that $\pi \gamma \equiv 1 \bmod \bar{\pi}$. Let $x=\overline{\pi \gamma}+\alpha \pi \gamma$ for some $\alpha \in \mathbb{Z}$ coprime to p. Then

$$
\left(\frac{x}{\pi}\right)_{2}=\left(\frac{\overline{\pi \gamma}}{\pi}\right)_{2}=1
$$

Denote by $A=(\pi \gamma)^{2}+(\overline{\pi \gamma})^{2}$. Then $\mathbf{N}(x) \equiv \alpha A \bmod p$ and

$$
\left(\frac{\mathbf{N} x}{p}\right)=\left(\frac{\alpha A}{p}\right)
$$

Hence $\left(\frac{x}{\pi}\right)_{2} \neq\left(\frac{\mathbf{N} x}{p}\right)$ by taking $\left(\frac{\alpha}{p}\right)=-\left(\frac{A}{p}\right)$.
Lemma 5.10. Let $\varphi(\eta)$ be the cardinality of $G=\left(\mathbb{Z}[I] / \mathfrak{c}_{\eta}\right)^{\times}$. Then

$$
\# \mathscr{A}_{\eta}=2^{-k-\ell-4} \varphi(\eta)
$$

Proof. By the Chinese Remainder Theorem, we have a natural isomorphism

$$
\begin{aligned}
G & \cong\left(\frac{\mathbb{Z}[I]}{16 \mathbb{Z}[I]}\right)^{\times} \times \prod_{i=1}^{k-1}\left(\frac{\mathbb{Z}[I]}{\mathbf{N} \lambda_{i} \mathbb{Z}[I]}\right)^{\times} \times \prod_{\mu \mid Q_{1}}\left(\frac{\mathbb{Z}[I]}{\mathbf{N} \mu \mathbb{Z}[I]}\right)^{\times} \times \prod_{q \mid Q_{2}}\left(\frac{\mathbb{Z}[I]}{q \mathbb{Z}[I]}\right)^{\times} \\
\beta & \mapsto\left(\beta_{0}, \beta_{1}, \cdots, \beta_{k-1}, \beta_{\mu}^{\prime}, \beta_{q}^{\prime}\right)
\end{aligned}
$$

Then $\beta \in \mathscr{A}_{\eta}$ if and only if
(1) $\beta_{0} \equiv 1 \bmod 2+2 I$ and $\mathbf{N} \beta_{0} \equiv \alpha_{k} \bmod 16$;
(2) $\left[\frac{\mathbf{N} \beta_{i}}{\mathbf{N} \lambda_{i}}\right]=B_{i k}$ for all $1 \leqslant i \leqslant k-1$;
(3) $\left(\frac{\mathbf{N} \beta_{\mu}^{\prime}}{\mathbf{N} \mu}\right)=1$ for all $\mu \mid Q_{1}$;
(4) $\left(\frac{\mathbf{N} \beta_{q}^{\prime}}{q}\right)=1$ for all $q \mid Q_{2}$;
(5) $\prod_{s_{i}=1}\left(\frac{\beta_{i}}{\lambda_{i}}\right)_{2}=-\left(\frac{\eta / \delta}{\delta}\right)_{2}$.
(1) selects $\frac{1}{4} \times \frac{1}{4}$ number of elements in $(\mathbb{Z}[I] / 16 \mathbb{Z}[I])^{\times}$. Note that $\left(\mathbb{Z}[I] / \lambda_{i} \mathbb{Z}[I]\right)^{\times} \cong$ $\left(\mathbb{Z} / \mathbf{N} \lambda_{i} \mathbb{Z}\right)^{\times}$, each conditions in (2)-(4) selects half number of elements in each corresponding component.

To treat (5), we choose $\beta_{1}, \cdots, \beta_{k-1}$ as following. Since $s_{k}=0$, there is some $s_{j}=1$ for $1 \leqslant j \leqslant k-1$. For $i=1,2, \cdots, j-1, j+1, \cdots, k-1$, we choose $\beta_{i} \in\left(\mathbb{Z}[I] / N \lambda_{i} \mathbb{Z}[I]\right)^{\times}$satisfying (2), and there are half number of $\left(\mathbb{Z}[I] / N \lambda_{i} \mathbb{Z}[I]\right)^{\times}$choices. With above chosen $\beta_{1}, \cdots, \beta_{j-1}, \beta_{j+1}, \cdots, \beta_{k-1}$, applying Lemmas 5.8 and 5.9 to $\pi=\lambda_{j}$, (5) and $\left[\frac{\mathbf{N} \beta_{j}}{\mathbf{N} \lambda_{j}}\right]=B_{j k}$ selects $\frac{1}{4}$ number of elements in $\left(\mathbb{Z}[I] / N \lambda_{j} \mathbb{Z}[I]\right)^{\times}$. Hence

$$
\frac{\# \mathscr{A}_{\eta}}{\varphi(\eta)}=\frac{1}{16} \times \frac{1}{2^{k-1}} \times \frac{1}{2^{\ell}} \times \frac{1}{2}=2^{-k-\ell-4}
$$

For any $\eta \in T_{k}^{\prime}(x)$, denote by $h(\eta)$ the number of primes $\theta \in \mathcal{P}$ such that $\mathbf{N} \lambda_{k-1}<\mathbf{N} \theta \leqslant x / \mathbf{N} \eta$ and $\theta \bmod \mathfrak{c}_{\eta} \in \mathscr{A}_{\eta}$. Then we have

$$
\begin{equation*}
\# C_{k}^{\prime}(x, \alpha, \mathbf{B})=\sum_{\eta \in T_{k}^{\prime}(x)} h(\eta) \tag{5.8}
\end{equation*}
$$

Denote by

$$
M_{1}=(\log x)^{100} \quad \text { and } \quad M_{2}=\exp \left(\frac{\log x}{(\log \log x)^{100}}\right)
$$

We will use

$$
\sum_{\mathbf{N} \eta \in S}^{*}
$$

to denote a summation over $\eta \in T_{k}^{\prime}(x)$ with $\mathbf{N} \eta \in S$.
Lemma 5.11. We have

$$
\begin{aligned}
& \sum_{20<\mathbf{N} \eta \leqslant M_{1}}^{*} \operatorname{Li}(x / \mathbf{N} \eta)=o\left(\frac{x(\log \log x)^{k-1}}{\log x}\right), \\
& \sum_{M_{2}<\mathbf{N} \eta \leqslant x^{\frac{k-1}{k}}}^{*} \operatorname{Li}(x / \mathbf{N} \eta)=o\left(\frac{x(\log \log x)^{k-1}}{\log x}\right), \\
& \sum_{M_{1}<\mathbf{N} \eta \leqslant M_{2}}^{*} \operatorname{Li}(x / \mathbf{N} \eta) \sim \frac{\# T_{k}^{\prime}(x)}{k-1} \log \log x .
\end{aligned}
$$

Proof. The proof is similar to [CO89, Lemma 3.1].
Denote by $\pi(x)$ the number of prime ideals in $\mathbb{Z}[I]$ with norm less than or equal x. Then the prime ideal theorem over $\mathbb{Z}[I]$ tells $\pi(x) \sim \operatorname{Li}(x)$. Certainly, $h(\eta) \leqslant$ $\pi(x / \mathbf{N} \eta)$. Then we have

$$
\begin{align*}
\sum_{\mathbf{N} \eta \leqslant 20}^{*} h(\eta) & \ll \operatorname{Li}(x), \\
\sum_{20<\mathbf{N} \eta \leqslant M_{1}}^{*} h(\eta) & =o\left(\frac{x(\log \log x)^{k-1}}{\log x}\right), \tag{5.9}\\
\sum_{M_{2}<\mathbf{N} \eta \leqslant x^{\frac{k-1}{k}}}^{*} h(\eta) & =o\left(\frac{x(\log \log x)^{k-1}}{\log x}\right)
\end{align*}
$$

by Lemma 5.11. If $\mathbf{N} \eta>x^{\frac{k-1}{k}}$, then $\mathbf{N} \lambda_{k-1}>x^{\frac{1}{k}}$ and $x / \mathbf{N} \eta<x^{\frac{1}{k}}<\mathbf{N} \lambda_{k-1}$. Therefore, $h(\eta)=0$ and

$$
\begin{equation*}
\sum_{x^{\frac{k-1}{k}}<\mathbf{N} \eta \leqslant x}^{*} h(\eta)=0 . \tag{5.10}
\end{equation*}
$$

Denote by $\pi^{\prime}(y, \mathscr{B}, \mathfrak{a})$ the number of primes $\theta \in \mathbb{Z}[I]$ such that $\mathbf{N} \theta \leqslant y$ and $\theta \bmod \mathfrak{a} \in \mathscr{B} \subseteq(\mathbb{Z}[I] / \mathfrak{a})^{\times}$. Since $\theta \in \mathcal{P}$ has positive imaginary part, we have

$$
h(\eta)=\frac{1}{2}\left(\pi^{\prime}\left(x / \mathbf{N} \eta, \mathscr{A}_{\eta}, \mathfrak{c}_{\eta}\right)-\pi^{\prime}\left(\mathbf{N} \lambda_{k-1}, \mathscr{A}_{\eta}, \mathfrak{c}_{\eta}\right)\right)+O(\sqrt{x})
$$

Here the error term origins from $-p$ with $p \equiv 3 \bmod 4$ rational prime, and the implicit constant is absolute. By (5.8), (5.9), (5.10) and the facts that

$$
\sum_{M_{1}<\mathbf{N} \eta \leqslant M_{2}}^{*} \pi^{\prime}\left(\mathbf{N} \lambda_{k-1}, \mathscr{A}_{\eta}, \mathfrak{c}_{\eta}\right) \ll M_{2} \operatorname{Li}\left(M_{2}\right)=o\left(\frac{x(\log \log x)^{k-1}}{\log x}\right)
$$

and M_{2} is of much small order than $x^{\frac{1}{4}}$, we obtain

$$
\begin{equation*}
\# C_{k}^{\prime}(x, \alpha, B) \sim \frac{1}{2} \sum_{M_{1}<\mathbf{N} \eta \leqslant M_{2}}^{*} \pi^{\prime}\left(x / \mathbf{N} \eta, \mathscr{A}_{\eta}, \mathfrak{c}_{\eta}\right) \tag{5.11}
\end{equation*}
$$

with error term $o\left(\# C_{k}(x)\right)$.
By [Lan94, Theorem 6.1], we have an exact sequence

$$
\begin{equation*}
1 \longrightarrow \mathbb{Z}[I]^{\times} \longrightarrow\left(\mathbb{Z}[I] / \mathfrak{c}_{\eta}\right)^{\times} \xrightarrow{\Phi} I\left(\mathfrak{c}_{\eta}\right) / P_{\mathfrak{c}_{\eta}} \longrightarrow 1 \tag{5.12}
\end{equation*}
$$

where $\Phi(\gamma)=(\gamma) \bmod P_{\mathfrak{c}_{\eta}}$. Denote by $\pi(y, \mathscr{B}, \mathfrak{c})$ the number of prime ideals \mathfrak{p} such that $\mathbf{N p} \leqslant y$ and $\mathfrak{p} \bmod P_{\mathfrak{c}} \in \mathscr{B} \subseteq I(\mathfrak{c}) / P_{\mathfrak{c}}$. Denote by $\mathscr{T}_{\eta}=\Phi\left(\mathscr{A}_{\eta}\right)$. Then

$$
\begin{equation*}
\pi^{\prime}\left(y, \mathscr{A}_{\eta}, \mathfrak{c}_{\eta}\right)=\pi\left(y, \mathscr{T}_{\eta}, \mathfrak{c}_{\eta}\right) \quad \text { and } \quad \# \mathscr{A}_{\eta}=\# \mathscr{T}_{\eta} \tag{5.13}
\end{equation*}
$$

by noting that every prime ideal in a class of \mathscr{T} corresponds to exactly one primary prime element.

Define

$$
\psi(y, \mathscr{B}, \mathfrak{c})=\sum_{\substack{\mathcal{N} a \leq y \\ \mathfrak{a} \bmod P_{\mathfrak{c}} \in \mathscr{B}}} \Lambda(\mathfrak{c})
$$

Then we have the standard asymptotic relation $\psi(y, \mathscr{B}, \mathfrak{c}) \sim \log y \cdot \pi(y, \mathscr{B}, \mathfrak{c})$.
Therefore,

$$
\begin{equation*}
2 \log x \cdot \# C_{k}^{\prime}(x, \alpha, B) \sim \sum_{M_{1}<\mathbf{N} \eta \leqslant M_{2}}^{*} \psi\left(x / \mathbf{N} \eta, \mathscr{T}_{\eta}, \mathfrak{c}_{\eta}\right) \tag{5.14}
\end{equation*}
$$

by (5.11) and (5.13). By the orthogonality of characters and the exact sequence (5.12), we get

$$
\psi\left(y, \mathscr{T}_{\eta}, \mathfrak{c}_{\eta}\right)=\frac{4}{\varphi(\eta)} \sum_{\chi} \psi(y, \chi) \sum_{\mathfrak{a} \bmod P_{\mathfrak{c}_{\eta}} \in \mathscr{T}_{\eta}} \overline{\chi(\mathfrak{a})},
$$

where χ runs over all characters of $I\left(\mathfrak{c}_{\eta}\right) / P_{\mathfrak{c}_{\eta}}$ and

$$
\psi(y, \chi)=\sum_{\mathbf{N a} \leqslant y} \Lambda(\mathfrak{a}) \chi(\mathfrak{a})
$$

Therefore,

$$
\begin{equation*}
2 \log x \cdot \# C_{k}^{\prime}(x, \alpha, B) \sim S_{1}+S_{2} \tag{5.15}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{1} & =\sum_{M_{1}<\mathbf{N} \eta \leqslant M_{2}}^{*} \frac{4 \# \mathscr{T}_{\eta}}{\varphi(\eta)} \psi\left(x / \mathbf{N} \eta, \chi_{0}\right), \\
S_{2} & =\sum_{M_{1}<\mathbf{N} \eta \leqslant M_{2}}^{*} \frac{4}{\varphi(\eta)} \sum_{\chi \neq \chi_{0}} \psi(x / \mathbf{N} \eta, \chi) \sum_{\mathfrak{a} \bmod P_{\mathfrak{c}_{\eta}} \in \mathscr{T}_{\eta}} \overline{\chi(\mathfrak{a})} .
\end{aligned}
$$

The main term is

$$
\begin{aligned}
S_{1} & =2^{-k-\ell-2} \sum_{M_{1}<\mathbf{N} \eta \leqslant M_{2}}^{*} \psi\left(x / \mathbf{N} \eta, \chi_{0}\right) \quad \text { by Lemma } 5.10 \text { and }(5.13) \\
& \sim 2^{-k-\ell-2} \sum_{M_{1}<\mathbf{N} \eta \leqslant M_{2}}^{*} \log (x / \mathbf{N} \eta) \operatorname{Li}(x / \mathbf{N} \eta) \\
& \sim 2^{-k-\ell-2} \log x \sum_{M_{1}<\mathbf{N} \eta \leqslant M_{2}}^{*} \operatorname{Li}(x / \mathbf{N} \eta) \\
& \sim \frac{\log x \cdot \log \log x}{(k-1) \cdot 2^{k+\ell+2}} \cdot \# T_{k}^{\prime}(x) \quad \text { by Lemma } 5.11 \\
& \sim \frac{\log x \cdot \log \log x}{(k-1) \cdot 2^{k \ell+3 k+\binom{k}{2}} \cdot \# C_{k-1}(x) \quad \text { by Lemma } 5.6 \text { and }(5.7)} \\
& \sim 2^{-k \ell-3 k-\binom{k}{2}} \log x \cdot \# C_{k}(x) \quad \text { by }(1.1) .
\end{aligned}
$$

By (5.14) and Lemma 5.5, this theorem is reduced to show that S_{2} is an error term. Denote by \mathfrak{f} the conductor of the exceptional primitive conductor with $Z=$ $256 M_{2}$ in Page Theorem 5.4. Then $S_{2}=S_{3}+S_{4}$, where

$$
\begin{aligned}
S_{3} & =\sum_{\substack{M_{1}<\mathbf{N} \eta \leqslant M_{2} \\
\mathfrak{f | \mathfrak { c } _ { \eta }}}}^{*} \frac{4}{\varphi(\eta)} \sum_{\chi \neq \chi_{0}} \psi(x / \mathbf{N} \eta, \chi) \sum_{\mathfrak{a} \bmod P_{\mathfrak{c}_{\eta}} \in \mathscr{T}_{\eta}} \overline{\chi(\mathfrak{a})}, \\
S_{4} & =\sum_{\substack{M_{1}<\mathbf{N} \eta \leqslant M_{2} \\
\mathfrak{f \not f \mathfrak { c } _ { \eta }}}}^{*} \frac{4}{\varphi(\eta)} \sum_{\chi \neq \chi_{0}} \psi(x / \mathbf{N} \eta, \chi) \sum_{\mathfrak{a} \bmod P_{\mathfrak{c}_{\eta} \in \mathscr{T}_{\eta}}} \overline{\chi(\mathfrak{a})} .
\end{aligned}
$$

We have

$$
\begin{aligned}
S_{3} & \ll \sum_{\substack{M_{1}<\mathbf{N} \eta \leqslant M_{2} \\
\mathfrak{f} \mid \mathfrak{c}_{\eta}}}^{*} \psi\left(x / \mathbf{N} \eta, \chi_{0}\right) \ll x \sum_{\substack{M_{1}<\mathbf{N} \eta \leqslant M_{2} \\
\mathfrak{f} \mid c_{\eta}}}^{*}(\mathbf{N} \eta)^{-1} \\
& =\frac{x}{\mathbf{N} \mathfrak{f}} \sum_{M_{1}<t \mathbf{N} \mathfrak{f} \leqslant M_{2}} t^{-1} \sum_{\substack{\mathfrak{f} \mid \mathfrak{l}_{\eta} \\
\mathbf{N} \eta t \mathbf{N} \mathfrak{f}}}^{*} 1 \ll \frac{x \log M_{2}}{\mathbf{N} \mathfrak{f}} .
\end{aligned}
$$

By Page Theorem 5.4 for $Z=256 M_{2}$, there is a positive constant c_{6} such that the Siegel zero β of the primitive character with modulus \mathfrak{f} has the property

$$
\beta>1-\frac{c_{6}}{\log 256 M_{2}} .
$$

By Siegel Theorem 5.3 for $F=\mathbb{Q}(I)$, there is a constant $c_{4}=c_{4}(2,1 / 200)>0$ such that

$$
\beta \leqslant 1-c_{4}(4 \mathbf{N} \mathfrak{f})^{-1 / 200} .
$$

Therefore, $\mathbf{N} \mathfrak{f} \gg\left(\log M_{2}\right)^{100}$ and $S_{3} \ll x\left(\log M_{2}\right)^{-99}$ is an error term.
Since there is no Siegel zero in S_{4}, we can apply the explicit formula (5.6) with $T=(\mathbf{N} \eta)^{4}$ to all the $\psi(x / \mathbf{N} \eta, \chi)$ in S_{4}. Then we obtain

$$
\begin{aligned}
\psi(x / \mathbf{N} \eta, \chi) \ll & x(\mathbf{N} \eta)^{-1}(\log x)^{2} \exp \left(-\frac{c_{7} \log (x / \mathbf{N} \eta)}{\log \mathbf{N} \eta}\right) \\
& +x(\mathbf{N} \eta)^{-5}(\log x)^{2}+x^{1 / 4}(\mathbf{N} \eta)^{-1 / 4} \log (x / \mathbf{N} \eta)
\end{aligned}
$$

and $S_{4} \ll S_{5}+S_{6}+S_{7}$, where

$$
\begin{aligned}
& S_{5}=\sum_{\substack{M_{1}<\mathbf{N} \eta \hbar \leqslant M_{2} \\
\mathrm{f} \not \boldsymbol{c}^{\prime} \eta}}^{*} x(\mathbf{N} \eta)^{-1}(\log x)^{2} \exp \left(-\frac{c_{7} \log (x / \mathbf{N} \eta)}{\log \mathbf{N} \eta}\right), \\
& \ll x(\log x)^{2} \exp \left(-c_{8}(\log \log x)^{100}\right) \cdot \sum_{\substack{M_{1}<\mathbf{N} \eta \leqslant M_{2} \\
\mathrm{f} \nmid c_{n}}}^{*}(\mathbf{N} \eta)^{-1} \\
& \ll x(\log x)^{3} \exp \left(-c_{8}(\log \log x)^{100}\right), \\
& S_{6}=\sum_{\substack{M_{1}<\mathbf{N} \eta \leqslant M_{2} \\
\mathrm{ff} \mathrm{c}_{n}}}^{*} x(\mathbf{N} \eta)^{-5}(\log x)^{2} \ll x(\log x)^{2} M_{1}^{-3} \ll x(\log x)^{-200}, \\
& S_{7}=\sum_{\substack{M_{1}<\mathbf{N} \eta \leqslant M_{2} \\
\mathfrak{f} c_{\eta}}}^{*} x^{1 / 4}(\mathbf{N} \eta)^{-1 / 4} \log (x / \mathbf{N} \eta) \ll x^{1 / 4} \log x \cdot M_{2}^{3 / 4} \ll x^{1 / 2} .
\end{aligned}
$$

Hence S_{4} is also an error term. This finishes the proof.

6. Distribution result

Assume that $\operatorname{Sel}_{2}(E / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Let $n=p_{1} \cdots p_{k}$ be an element in $\mathscr{Q}_{k}(x)$ with $p_{1}<\cdots<p_{k}$. Then $n \in \mathscr{P}_{k}(x)$ if and only if $h_{4}(n)=1$ and $h_{8}(n) \equiv \frac{d-1}{4} \bmod$ 2 , where d is a certain divisor of n. As shown in the proof of Theorem 1.1(B), the rank of $\mathbf{A}=\mathbf{A}_{n}$ is $k-1$ or $k-2$.

Assume that $\operatorname{rank} \mathbf{A}=k-2$. As shown in the proof of Theorem 1.1(B), $h_{4}(n)=1$ if and only if $\mathbf{b}_{2} \notin \operatorname{Im} \mathbf{A}$. In this case, $d=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}} \equiv 5 \bmod 8$, where $\operatorname{Ker} \mathbf{A}=$ $\{\mathbf{0}, \mathbf{1}, \mathbf{d}, \mathbf{d}+\mathbf{1}\}$ and $\mathbf{d}=\left(s_{1}, \ldots, s_{k}\right)^{\mathrm{T}}$. We may assume that $s_{k}=0$. By [JY11, Theorem 3.3(ii)], $h_{8}(n)=1$ if and only if

$$
\begin{equation*}
\left(\frac{d}{d^{\prime}}\right)_{4}\left(\frac{d^{\prime}}{d}\right)_{4}=-1 \tag{6.1}
\end{equation*}
$$

where $d^{\prime}=n / d$.
Assume that $\operatorname{rank} \mathbf{A}=k-1$. Then $h_{4}(n)=1, \mathbf{b}_{2} \in \operatorname{Im} \mathbf{A}$ and $d=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$, where $\mathbf{A d}=\mathbf{b}_{2}$ and $\mathbf{d}=\left(s_{1}, \cdots, s_{k}\right)^{\mathrm{T}}$. By [JY11, Theorem 3.3(iii), (iv)], $h_{8}(n)=1$ if and only if

$$
\left(\frac{2 d}{d^{\prime}}\right)_{4}\left(\frac{2 d^{\prime}}{d}\right)_{4}=(-1)^{\frac{n-1}{8}}
$$

where $d^{\prime}=n / d$.
Proof of Theorem 1.3. For $k \geqslant 2$, let \mathscr{B} be the set of all symmetric $\mathbf{B} \in M_{k}\left(\mathbb{F}_{2}\right)$ with rank $k-2$ and $\mathbf{B 1}=\mathbf{0}$. Let \mathscr{I} be the set of all vectors $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ with $\alpha_{i} \in\{1,5,9,13\}$ and $\alpha_{1} \cdots \alpha_{k} \equiv 1 \bmod 8$. Denote by $\mathscr{I}_{\mathbf{B}}$ the set of all $\alpha \in \mathscr{I}$ such that $\mathbf{b}(\alpha) \notin \operatorname{Im} \mathbf{B}$, where $\mathbf{b}(\alpha)=\left(\left[\frac{2}{\alpha_{1}}\right], \ldots,\left[\frac{2}{\alpha_{k}}\right]\right)^{\mathrm{T}}$. Since $\alpha_{1} \cdots \alpha_{k} \equiv 1 \bmod 8$, we have $\mathbf{b}(\alpha)^{\mathrm{T}} \mathbf{1}=0$. For any $\mathbf{B} \in \mathscr{B}$ and $\alpha \in \mathscr{I}_{\mathbf{B}}, C_{k}(x, \alpha, \mathbf{B})$ is the set of all $n=p_{1} \cdots p_{k} \in \mathscr{P}_{k}(x)$ satisfying

- $p_{1}<\cdots<p_{k}$ and $\mathbf{A}_{n}=\mathbf{B}$;
- $p_{i} \equiv \alpha_{i} \bmod 16$ for all $1 \leqslant i \leqslant k$;
- $\left(\frac{p_{i}}{q_{j}}\right)=1$ for all $1 \leqslant i \leqslant k$ and $1 \leqslant j \leqslant \ell$
by (6.1). Moreover, if $\mathbf{B} \in \mathscr{B}$ and $\alpha \notin \mathscr{I}_{\mathbf{B}}$, then $C_{k}(x, \alpha, \mathbf{B}) \cap \mathscr{P}_{k}(x)=\emptyset$. Therefore, the number $N_{1}(x)$ of those $n \in \mathscr{P}_{k}(x)$ with $\operatorname{rank} \mathbf{A}_{n}=k-2$ is

$$
\begin{equation*}
N_{1}(x)=\sum_{\mathbf{B} \in \mathscr{B}} \sum_{\alpha \in \mathscr{I}_{\mathbf{B}}} \# C_{k}(x, \alpha, \mathbf{B}) \sim 2^{-k \ell-3 k-1-\binom{k}{2}} \cdot \# C_{k}(x) \cdot \sum_{\mathbf{B} \in \mathscr{B}} \# \mathscr{I}_{\mathbf{B}} \tag{6.2}
\end{equation*}
$$

by Theorem 5.7.
Now we count the number of $\mathscr{I}_{\mathbf{B}}$ with given \mathbf{B}. Given $\mathbf{b}=\left(b_{1}, \cdots, b_{k}\right)^{\mathrm{T}} \notin \operatorname{Im} \mathbf{B}$ with $\mathbf{b}^{\mathrm{T}} \mathbf{1}=0$, the number of α with $\mathbf{b}(\alpha)=\mathbf{b}$ is 2^{k}. This is because $\alpha_{i}=1,9$ if $b_{i}=0$ and $\alpha_{i}=5,13$ if $b_{i}=1$. Since \mathbf{B} is symmetric and $\mathbf{B 1}=\mathbf{0}$, the size of $\operatorname{Im} \mathbf{B} \subset \mathcal{H}_{n}:=\left\{\mathbf{u}: \mathbf{1}^{\mathrm{T}} \mathbf{u}=0\right\}$ is 2^{k-2}. If $\mathbf{b}^{\mathrm{T}} \mathbf{1}=0$ and $\operatorname{rank}(\mathbf{B}, \mathbf{b})=k-1$, then $\mathbf{b} \in \mathcal{H}_{n}-\operatorname{Im} \mathbf{B}$ has 2^{k-2} choices. Consequently, $\# \mathscr{I}_{\mathbf{B}}=2^{2 k-2}$ and then

$$
N_{1}(x) \sim 2^{-k \ell-k-3-\binom{k}{2}} \cdot \# C_{k}(x) \cdot \# \mathscr{B}
$$

Proposition $6.1\left(\left[\mathrm{BCJ}^{+} 06\right]\right)$. Denote by $\mathscr{B}_{k, r}$ the set of $k \times k$ symmetric matrices over \mathbb{F}_{2} with rank r. Then

$$
\# \mathscr{B}_{k, r}=u_{r+1} 2^{\binom{+1}{2}} \cdot \prod_{i=0}^{k-r-1} \frac{2^{k}-2^{i}}{2^{k-r}-2^{i}}
$$

where u_{i} is defined in Theorem 1.3.
The left-top minor of \mathbf{B} of order $k-1$ induces a bijection $\mathscr{B} \rightarrow \mathscr{B}_{k-1, k-2}$. So $\# \mathscr{B}=\# \mathscr{B}_{k-1, k-2}$ and we get

$$
N_{1}(x) \sim 2^{-k \ell-k-3}\left(1-2^{1-k}\right) u_{k-1} \cdot \# C_{k}(x)
$$

The number $N_{2}(x)$ of $n \in \mathscr{P}_{k}(x)$ with rank $\mathbf{A}_{n}=k-1$ can be obtained similarly:

$$
N_{2}(x) \sim 2^{-k-k \ell-2} u_{k} \cdot \# C_{k}(x)
$$

We refer to our previous paper [Wan17] for more details. This finishes the proof of this theorem.

Acknowledgement. The first author is supported by the National Natural Science Foundation of China (Grant No. 11801344) and Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-401). The second author is supported by the National Natural Science Foundation of China (Grant No. 12001510). The authors are greatly indebted to Professor Ye Tian for many instructions and suggestions.

References

[BCJ+06] Morgan V. Brown, Neil J. Calkin, Kevin James, Adam J. King, Shannon Lockard, and Robert C. Rhoades. Trivial Selmer groups and even partitions of a graph. Integers, 6:A33, 17, 2006.
[Cas98] J. W. S. Cassels. Second descents for elliptic curves. J. Reine Angew. Math., 494:101127, 1998. Dedicated to Martin Kneser on the occasion of his 70th birthday.
[CO89] J. E. Cremona and R. W. K. Odoni. Some density results for negative Pell equations; an application of graph theory. J. London Math. Soc. (2), 39(1):16-28, 1989.
[Dav80] Harold Davenport. Multiplicative number theory, volume 74 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, second edition, 1980. Revised by Hugh L. Montgomery.
[Fog61] E. Fogels. On the zeros of Hecke's L-functions. I. Acta Arith., 7(2):87-106, 1961.
[Fog63] E. Fogels. Über die Ausnahmenullstelle der Heckeschen L-Funktionen. Acta Arith., 8:307-309, 1963.
[HB94] D. R. Heath-Brown. The size of Selmer groups for the congruent number problem. II. Invent. Math., 118(2):331-370, 1994. With an appendix by P. Monsky.
[Hec81] Erich Hecke. Lectures on the theory of algebraic numbers, volume 77 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1981. Translated from the German by George U. Brauer, Jay R. Goldman and R. Kotzen.
[HR95] Jeffrey Hoffstein and Dinakar Ramakrishnan. Siegel zeros and cusp forms. Internat. Math. Res. Notices, 6:279-308, 1995.
[IK04] Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
[IR90] Kenneth Ireland and Michael Rosen. A classical introduction to modern number theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.
[JY11] Hwanyup Jung and Qin Yue. 8-ranks of class groups of imaginary quadratic number fields and their densities. J. Korean Math. Soc., 48(6):1249-1268, 2011.
[Lan18] Edmund Landau. Über Ideale und Primideale in Idealklassen. Math. Z., 2(1-2):52-154, 1918.
[Lan94] Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1994.
[Maz77] B. Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math., 47:33-186 (1978), 1977. With an appendix by Mazur and M. Rapoport.
[Maz78] B. Mazur. Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math., 44(2):129-162, 1978.
[Ono96] Ken Ono. Euler's concordant forms. Acta Arith., 78(2):101-123, 1996.
[Red34] L. Rédei. Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math., 171:55-60, 1934.
[Rho09] Robert C. Rhoades. 2-Selmer groups and the Birch-Swinnerton-Dyer conjecture for the congruent number curves. J. Number Theory, 129(6):1379-1391, 2009.
[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
[Wan16] Zhang Jie Wang. Congruent elliptic curves with non-trivial Shafarevich-Tate groups. Sci. China Math., 59(11):2145-2166, 2016.
[Wan17] ZhangJie Wang. Congruent elliptic curves with non-trivial Shafarevich-Tate groups: distribution part. Sci. China Math., 60(4):593-612, 2017.

School of Mathematics and statistics, Shaanxi Normal University, Xi'an 710119 , China

Email address: zhangjiewang@snnu.edu.cn
School of Mathematics, Hefei University of Technology, Hefei, Anhui 230000, China
Email address: zhangshenxing@hfut.edu.cn

[^0]: Date: February 20, 2022.
 2020 Mathematics Subject Classification. Primary 11G05; Secondary 11R11, 11R29, 11N99.
 Key words and phrases. Shafarevich-Tate groups; full 2-torsion; Cassels pairing; Gauss genus theory; equidistribution property; residue symbols.

