EXERCISE SHEET 1: ALGEBRAIC NUMBER THEORY SUMMER SCHOOL AT AMSS 2019

Exercise 1. The aim of the exercise is to prove that if $\alpha \in \mathbb{C}$ is an algebraic integer such that $|\sigma(\alpha)|=1$ for all $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{C})$, then α must be a root of unity.
(1) Show that if $f(X) \in \mathbb{C}[X]$ be a monic polynomial such that all its roots have complex absolute value 1, then the coefficient of X^{r} in $f(X)$ is bounded by $\binom{n}{r}$.
(2) Show that given an integer $n \geq 1$, there exist only finitely many algebraic integers α of degree n such that $|\sigma(\alpha)|=1$ for all $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{C})$.
(3) Show that an α as in (2) is a root of unity.

Exercise 2. Let $f(x)=x^{3}+a x+b$ be an irreducible polynomial over \mathbb{Q}, and $\alpha \in \mathbb{C}$ be a root of $f(x)$. Set $K=\mathbb{Q}[\alpha]$, and \mathcal{O}_{K} to be its ring of integers.
(1) Show that $f^{\prime}(\alpha)=-(2 a \alpha+3 b) / \alpha$.
(2) Find an irreducible polynomial for $2 a \alpha+3 b$ over \mathbb{Q}.
(3) Show that $\operatorname{Disc}_{K / \mathbb{Q}}\left(1, \alpha, \alpha^{2}\right)=-\left(4 a^{3}+27 b^{2}\right)$.
(4) Prove that $f(x)$ is irreducible when $a=b=-1$, and find an integral basis of K.

Exercise 3. Consider the number field $K=\mathbb{Q}[\sqrt{7}, \sqrt{10}]$, and let \mathcal{O}_{K} be its ring of integers. The aim of this exercise is to show that there exists no algebraic integer α such that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(1) Consider the elements:

$$
\begin{aligned}
& \alpha_{1}=(1+\sqrt{7})(1+\sqrt{10}), \\
& \alpha_{2}=(1+\sqrt{7})(1-\sqrt{10}), \\
& \alpha_{3}=(1-\sqrt{7})(1+\sqrt{10}), \\
& \alpha_{4}=(1-\sqrt{7})(1-\sqrt{10}) .
\end{aligned}
$$

Show that for any $i \neq j$, the product $\alpha_{i} \alpha_{j}$ is divisible by 3 in \mathcal{O}_{K}.
(2) Let $i \in\{1,2,3,4\}$ and $n \geq 0$ be an integer. Show that

$$
\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha_{i}^{n}\right)=\alpha_{1}^{n}+\alpha_{2}^{n}+\alpha_{3}^{n}+\alpha_{4}^{n} \equiv\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)^{n} \quad \bmod 3 .
$$

Deduce that $\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha_{i}\right) \equiv 1 \bmod 3$ and hence 3 does not divide α_{i} in \mathcal{O}_{K}.
(3) Let α be an algebraic integer. Suppose that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$. Let $f \in \mathbb{Z}[X]$ be the minimal polynomial of α. For all polynomial $g \in \mathbb{Z}[X]$, we denote by $\bar{g} \in \mathbb{F}_{3}[X]$ its reduction modulo 3 . Show that $g(\alpha)$ is divisible by 3 in \mathcal{O}_{K} if and only if \bar{g} is divisible by \bar{f} in $\mathbb{F}_{3}[X]$.
(4) For $1 \leq i \leq 4$, let $g_{i}(X) \in \mathbb{Z}[X]$ be such that $\alpha_{i}=g_{i}(\alpha)$. Show that there exists an irreducible factor of \bar{f} that divides \bar{g}_{j} for any $j \neq i$ but does not divide \bar{g}_{i}.
(5) Consider the number of irreducible factors of \bar{f} and deduce a contradiction.

EXERCISE SHEET 2: ALGEBRAIC NUMBER THEORY SUMMER SCHOOL AT AMSS 2019

Exercise 1. Find an integral basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $\mathbb{Q}(\sqrt{3}, \sqrt{5})$.
Exercise 2. Let ζ_{N} be a primitive N-th root of unity. Put $\theta=\zeta_{N}+\zeta_{N}^{-1}$.
(1) Show that $\mathbb{Q}(\theta)$ is the fixed field of $\mathbb{Q}\left(\zeta_{N}\right)$ under the automorphism defined by the complex conjugation.
(2) Put $n=\phi(N) / 2$. Show that $\left\{1, \zeta_{N}, \theta, \theta \zeta_{N}, \theta^{2}, \theta^{2} \zeta_{N}, \cdots, \theta^{n-1}, \theta^{n-1} \zeta_{N}\right\}$ is an integral basis for $\mathbb{Q}\left(\zeta_{N}\right)$.
(3) Show that the ring of integers of $\mathbb{Q}(\theta)$ is $\mathbb{Z}[\theta]$.
(4) Suppose that $N=p$ is an odd prime number. Prove that the discriminant of $\mathbb{Q}(\theta)$ is $\Delta_{\mathbb{Q}(\theta)}=p^{\frac{p-3}{2}}$.
Exercise 3. Let A be a local domain with unique maximal ideal $\mathfrak{m} \subset A$ such that each non-zero ideal $I \subseteq A$ admits a unique factorization $I=\prod_{i} \mathfrak{p}_{i}^{e_{i}}$ into products of prime ideals \mathfrak{p}_{i}.
(1) Show that there exists $x \in \mathfrak{m} \backslash \mathfrak{m}^{2}$.
(2) Let $x \in \mathfrak{m} \backslash \mathfrak{m}^{2}$ and $y \in \mathfrak{m}$. Prove that $(x, y) \subseteq A$ is prime ideal.

Hint: Write $(x, y)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}$ as a product of prime ideals and use $x \notin \mathfrak{m}^{2}$
(3) Prove $(x)=\mathfrak{m}$.

Hint: For $y \in \mathfrak{m}$, show $y \in\left(x, y^{2}\right)$.
(4) Conclude that every element $y \in A \backslash\{0\}$ admits a unique expression $y=u x^{e}$ with $e \geqslant 0$ and $u \in A^{\times}$a unit and that A is a discrete valuation ring.

Exercise 4 (Chinese Remainder Theorem). Let A be a commutative ring, $I, J \subseteq A$ be ideals such that $1 \in I+J$. Consider the natural map $\phi: A / I \cap J \rightarrow A / I \oplus A / J$ sending x to $(x \bmod I, x \bmod J)$.
(1) Prove that, given any $x \in A$, there exists $y \in I$ such that $y \equiv x \bmod J$ (Hint: write $1=a+b$ for some $a \in I$ and $b \in J)$.
(2) Use (1) to prove ϕ is an isomorphism.
(3) Suppose that A is a Dedekind domain. Let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}$ be primes of A such that $\mathfrak{p}_{i} \neq \mathfrak{p}_{j}$ if $i \neq j$, and $e_{1}, \cdots, e_{r} \geqslant 1$ be integers. Prove that

$$
A / \prod_{i=1}^{r} \mathfrak{p}_{i}^{e_{i}}=\bigoplus_{i=1}^{r} A / \mathfrak{p}_{i}^{e_{i}} .
$$

EXERCISE SHEET 3: ALGEBRAIC NUMBER THEORY SUMMER SCHOOL AT AMSS 2019

Exercise 1. Let $A=\mathbb{Z}[\sqrt{-1}]$.
(1) Find all the ideals $I \subseteq A$ with norm 65 (Hint: note that A is PID. Solve first the problem with 65 replaced by 5 and 13.).
(2) Are there infinitely many fractional ideals I of A with norm 1?

Exercise 2. Let $K=\mathbb{Q}(\alpha)$ with $\alpha^{3}=\alpha+1$.
(1) Show that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(2) Find the explicit decomposition of primes $p=3,5,23$ in \mathcal{O}_{K}.
(3) Prove that $\sqrt{\alpha}, \sqrt[3]{\alpha} \notin K$. (Hint: try to find prime p such that there exists a surjective map $\mathcal{O}_{K} \rightarrow \mathbb{F}_{p}$ such that the image of α can not has square or cubic root.)
Exercise 3. Let $K=\mathbb{Q}(\alpha)$ with $\alpha^{5}=2$.
(1) Determine all the primes p that are ramified in K.
(2) Prove that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(3) Prove that if p is a prime unramified in K and $5 \nmid\left(p^{2}-1\right)$, then p decomposes in \mathcal{O}_{K} as $(p)=\mathfrak{p p}^{\prime}$ with $f(\mathfrak{p} \mid p)=1$ and $f\left(\mathfrak{p}^{\prime} \mid p\right)=4$.

Exercise 4. Let K / \mathbb{Q} be a finite extension and $K^{\text {Gal }}$ be the Galois closure of K. Prove that if a prime p is unramified in K, it is also unramified in K^{Gal}.

