EXERCISE SHEET 1: ALGEBRAIC NUMBER THEORY
SUMMER SCHOOL AT AMSS 2019

Exercise 1. The aim of the exercise is to prove that if & € C is an algebraic integer such
that |o(a)| =1 for all o € Autg(C), then a must be a root of unity.
(1) Show that if f(X) € C[X] be a monic polynomial such that all its roots have
complex absolute value 1, then the coefficient of X" in f(X) is bounded by (7).
(2) Show that given an integer n > 1, there exist only finitely many algebraic integers
a of degree n such that |o(a)| =1 for all o € Autg(C).
(3) Show that an « as in (2) is a root of unity.

Exercise 2. Let f(x) = 23 + ax + b be an irreducible polynomial over Q, and o € C be
a root of f(x). Set K = Q[a], and O to be its ring of integers.

(1) Show that f'(a) = —(2ac + 3b) /.

(2) Find an irreducible polynomial for 2aca 4 3b over Q.

(3) Show that Discg q(1, a, o) = —(4a® 4 27b?).
(4) Prove that f(z) is irreducible when a = b = —1, and find an integral basis of K.

Exercise 3. Consider the number field K = Q[v7,4/10], and let O be its ring of
integers. The aim of this exercise is to show that there exists no algebraic integer a such
that O = Z[Oz].

(1) Consider the elements:

a1 = (L+V7)(1 +V10),
az = (1+V7)(1 - V10),
a3 = (1 - \/?)(1 + \/E)v

ag = (1 =V7)(1 - V10).

Show that for any ¢ # j, the product a;cy; is divisible by 3 in Og.
(2) Let i € {1,2,3,4} and n > 0 be an integer. Show that

Trrg(eg) = of +af + a5 +ay = (a1 + a2 + a3+ ag)” mod 3.

Deduce that Trg g(a;) =1 mod 3 and hence 3 does not divide a; in O.

(3) Let a be an algebraic integer. Suppose that Ox = Z[a]. Let f € Z[X] be the
minimal polynomial of o. For all polynomial g € Z[X], we denote by g € F3[X]
its reduction modulo 3. Show that g(«) is divisible by 3 in O if and only if g is
divisible by f in F3[X].

(4) For 1 <i < 4, let ¢;(X) € Z]X] be such that o; = ¢;(«v). Show that there exists
an irreducible factor of f that divides g; for any j # ¢ but does not divide g;.

(5) Consider the number of irreducible factors of f and deduce a contradiction.
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Exercise 1. Find an integral basis for Q(v/2,v/3) and Q(v/3,v/5).

Exercise 2. Let ( be a primitive N-th root of unity. Put 8 = (n + C&l.
(1) Show that Q(#) is the fixed field of Q((x) under the automorphism defined by the

complex conjugation.
(2) Put n = ¢(N)/2. Show that {1,Cn,0,0(N, 0%, 6%Cn, -+, 07 6" 1y} is an inte-
gral basis for Q((n).
(3) Show that the ring of integers of Q(6) is Z[6)].
(4) Suppose that N = p is an odd prime number. Prove that the discriminant of Q(6)
p—3

is AQ(@) =p 2.
Exercise 3. Let A be a local domain with unique maximal ideal m C A such that each
non-zero ideal I C A admits a unique factorization I = [[, p;" into products of prime
ideals p;.
(1) Show that there exists z € m\m?2.
(2) Let € m\m? and y € m. Prove that (z,y) C A is prime ideal.
Hint: Write (z,y) = p1---p, as a product of prime ideals and use x ¢ m>
(3) Prove (z) = m.
Hint: Fory € m, showy € (z,y?).
(4) Conclude that every element y € A\{0} admits a unique expression y = ux® with
e>0and u € A* a unit and that A is a discrete valuation ring.

Exercise 4 (Chinese Remainder Theorem). Let A be a commutative ring, I, J C A be
ideals such that 1 € I + J. Consider the natural map ¢ : A/INJ — A/I & A/J sending
x to (z mod I,z mod J).
(1) Prove that, given any = € A, there exists y € I such that y = z mod J (Hint:
write 1 = a + b for some a € I and b € J).
(2) Use (1) to prove ¢ is an isomorphism.
(3) Suppose that A is a Dedekind domain. Let py,---,p, be primes of A such that
p; #p; if i # j, and ey, -+ ,e, > 1 be integers. Prove that

A/Tw =D A
=1 =1
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Exercise 1. Let A = Z[v/—1].

(1) Find all the ideals I C A with norm 65 (Hint: note that A is PID. Solve first the
problem with 65 replaced by 5 and 13.).
(2) Are there infinitely many fractional ideals I of A with norm 17

Exercise 2. Let K = Q(a) with o® = a + 1.
(1) Show that Ox = Z[a].
(2) Find the explicit decomposition of primes p = 3,5,23 in Ok.
(3) Prove that /o, /a ¢ K. (Hint: try to find prime p such that there exists a
surjective map O — I, such that the image of o can not has square or cubic
root.)

Exercise 3. Let K = Q(a) with a® = 2.
(1) Determine all the primes p that are ramified in K.
(2) Prove that Og = Z[a].
(3) Prove that if p is a prime unramified in K and 51 (p?> — 1), then p decomposes in
Ok as (p) = pp’ with f(plp) =1 and f(p'[p) = 4.

Exercise 4. Let K/Q be a finite extension and K% be the Galois closure of K. Prove
that if a prime p is unramified in K, it is also unramified in K2l



