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1. Ideal Class Groups

1.1. Ideal class groups and unit groups. Let K be a number field. Denote Cl(K) be its ideal class
group and O×

K be its group of units.

Theorem 1.1. We have

(1) Cl(K) is a finite abelian group.
(2) O×

K
∼= Zr1+r2−1 × µ(K), where r1, r2 are the number of real and complex places of K, µ(K) is

the set of roots of unity in K, which is a finite cyclic group.

Summary. (1) Note that for any M ≥ 1, there exist only finite many integral ideals of OK with norm
bounded by M . Thus enough to show exists MK such that for any fractional ideal a, exists α ∈ a such
that N(αa−1) < MK . A fractional ideal a can be viewed as a lattice in Rr1 ×Cr2 ≃ Rn here n = [K : Q].
Consider the following centrally symmetric convex connected region

Ut =
{
(x, y) ∈ Rr1 × Cr2 |

r1∑
i=1

|xi|+
r2∑
j=1

2|yj | ≤ t
}
,

then exists CK such that for any a, if t ≥ CKN(a)1/n holds (equivalently, exists NK such that for any a,
if Vol(Ut) ≥ NKN(a) holds ), then exists 0 ̸= α ∈ a ∩ Ut. We thus have

N(α) ≤
(
CKN(a)1/n

n

)n

.

1



(2) Consider the log map:

ℓ : O×
K → Rr1+r2 , u 7→ (log |σ(u)|σi

)σi
,

here σi runs over all infinite places and | · |σ is the normalized valuation. Then ker ℓ = µ(K) and the
image lies in the hyperplane RΣ=0. The image in discrete in RΣ=0, thus enough to show that Im ℓ is a
(full) lattice of RΣ=0.

Fact 1.2. Let n = r1 + r2 and A ∈ Mn×n(R) such that every row lies in RΣ=0. If aii > 0 for all i and
ai,j < 0 for all i ̸= j, then rankA = n− 1.

By the above fact enough to find for each infinite place σi an element ui ∈ O×
K such that |σj(u)| < 1

for all j ̸= i. Thus enough to show exists CK large enough such that exists a sequence {an}n in OK with
norm bounded by CK such that {|σj(an)|}n is strictly decreasing for any j ̸= i. If this is down, choose
m > n such that (am) = (an). Then am/an is what needed. We now show the existence of the sequence:
Consider the following certrally symmetric convex connected region in Rr1+r2 :

Vc,t :=
{
x ∈ Rr1+r2 | |xi|σi

< ci and
∏
i

ci = t
}
.

Then exists Nk such that for any t ≥ NK and any c = (c1, · · · , cr1+r2) with
∏

i ci = t, exists 0 ̸= α ∈
Vc,t ∩ OK . By induction we can find the needed sequence.

□

1.2. Variation.

1.2.1. Variation of ideal class group. Recall a modulus m of K is a formal product mf · m∞ of an
integral ideal mf and a subset m∞ of real places of K. The ray class group modulo m is defined by
Cl(K)m := Imf /Pm,1, here Imf is the group of prime to mf fractional ideals and Pm,1 is the subgroup
of principal ideals which represented by elements α ∈ K× with α ≡ 1 (modmf ) and σ(α) ≥ 0 for all
σ ∈ m∞. If m = 1, we get the ideal class group. Denote Km the subgroup of K which is units at mf and
Km,1 the subgroup of Km that congruent to 1 modulo mf . Then we have the following exact sequence

0 → O×
K ∩Km/O×

K ∩Km,1 → Km/Km,1 → Cl(K)m → Cl(K) → 1.

In particular, #Cl(K)m is finite. We also have a canonical isomorphism

Km/Km,1 ≃
∏

σ∈m∞

{±1} × (OK/mf )
×.

1.2.2. Variation of units. Let S be a finite set of finite places of K, the group of S-units OK,S of K is
the subgroup of K× consists of elements which are units outside S. Then we have the following exact
sequence

1 → O×
K → O×

K,S

(ordv(·))v∈S−−−−−−−−→ ZS

and the cokernel of the last map is finite. Thus OK,S ≃ O×
K ⊕ Z#S ≃ Zr1+r2+#S−1.

1.3. Class Number Formula.

Theorem 1.3. Let K be a number field. Then we have the class number formula

Res
s=1

ζK(s) =
2r1(2π)r2#Cl(K)Reg(O×

K)

wK

√
|DK |

.

1.4. Chebotarev density theorem. Let L/K be a finite Galois extension of number fields. Let p be
a prime of K unramified in L and let P be a prime of L above p. Define the Frobenius FrobP(L/K) to

be the element in Gal(L/K) such that FrobP(L/K) stabilizes P and is x 7→ x#(OK/p) on OL/P. For
σ ∈ Gal(L/K), we have FrobPσ (L/K) = σFrobP(L/K)σ−1, therefore, we can define Frobp(L/K) :=
[FrobP(L/K)] to be the conjugacy class of FrobP(L/K) in Gal(L/K) for any P above p. In particular,
if L/K is abelian, then Frobp(L/K) is indeed an element of Gal(L/K).

Theorem 1.4 (Chebotarev density theorem). Let σ ∈ Gal(L/K) be any fixed element. Then among all
the primes of K unramified in L, the primes p which satisfy Frobp(L/K) = [σ] have density #[σ]/[L : K].

In particular, there exists infinitely many prime p of OK such that Frobp(L/K) = [σ], as well as
infinitely many prime P of OL such that FrobP(L/K) = σ.
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1.5. Class field theory.

Theorem 1.5. Let K be a number field. Let HK be the maximal abelian extension over K unramified
everywhere. Then there is a natural isomorphism (which is Gal(K/K0)-equivariant if K0 is any subfield
of K such that K/K0 is Galois):

Cl(K)
∼−→ Gal(HK/K), [p] 7→ Frobp(HK/K).

Corollary 1.6. For any C ∈ Cl(K), the density of prime ideals p such that p ∈ C is 1/#Cl(K).

1.6. The class number formula for cyclotomic fields. If K is abelian over Q, we have ζK(s) =∏
χ L(s, χ), here χ runs over all primitive characters associated to characters of Gal(K/Q). Thus

2r1(2π)r2#Cl(K)Reg(O×
K)

wK

√
|DK |

=
∏
χ ̸=1

L(s, χ).

Now let K be the cyclotomic field Q(ζp), p be an odd prime. Denote c the complex conjugation in
Gal(K/Q) and K+ = Q(ζp + ζ−1

p ) be the fixed field of c, then the natural norm map 1 + c : Cl(K) →
Cl(K+) is surjective. Define the minus part Cl(K)− to be the kernel of this map.

If χ : (Z/pZ)× → C× is a non-trivial Dirichlet character, we have the special value formula of the
Dirichlet L-function [7]

L(1, χ) =


−G(χ, ζp)

p

∑
a∈(Z/pZ)×

χ(a) log |1− ζap |, if χ is even and non-trivial,

πi
G(χ, ζp)

p
B1,χ, if χ is odd.

Here G(χ, ζp) :=
∑

a∈(Z/pZ)× χ(a)ζap is the Gauss sum. Therefore we have

Proposition 1.7. [7]

#Cl(K+) =
1

2(p−3)/2R(O×
K+)

∏
χ ̸=1 even

∑
a mod p

−χ(a) log |1− ζap |,

#Cl(K)− = 2p
∏

χ odd

−1

2
B1,χ.

Denote E (resp. E+) the group of units of K (resp. K+). Let C be the subgroup of E generated by
ζb
p−1

ζp−1 , (b, p) = 1 and roots of unity. Let C+ = C ∩K+.

Proposition 1.8. [7] We have

#Cl(K+) = #(E/C) = #(E+/C+)

Let ∆ = Gal(K/Q) and R = Z[∆]. For a ∈ (Z/pZ)× let σa ∈ ∆ be the element given by ζp 7→ ζap .
The following element

θ :=
1

p

p−1∑
a=1

aσ−1
a ∈ Q[∆],

is called the Stickelberger element. The Stickelberger ideal is defined by S = R ∩Rθ.

Proposition 1.9. [7] We have

#Cl(K)− = #(R−/S−)

1.7. A refinement of class number formula for cyclotomic fields. Let K be the cyclotomic field
Q(ζp) where p is an odd prime and K+ = Q(ζp + ζ−1

p ) be the maximal real subfield of K.

Theorem 1.10. Let q be a prime such that q ∤ p(p − 1). Let L be a finite extension of Qq and χ :
Gal(K/Q) → O×

L be an odd character. Then

#(Cl(K)⊗Z OL)χ = |B1,χ|−[L:Qq ]
q .

Equivalently, Cl(K)− ⊗Zq and (R−/S−)⊗Zq have the same Jordan-Hölder series as Zq[∆]-modules,
which is a refinement of the minus class number formula (Prop. 1.9).
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Theorem 1.11. Let q be a prime such that q ∤ p(p−1)
2 . Let L be a finite extension of Qq and χ :

Gal(K+/Q) → O×
L be a character. Then

#
(
Cl(K+)⊗Z OL

)
χ
= #

(
(E+/C+)⊗Z OL

)
χ
.

Equivalently, Cl(K+)⊗Zq and (E+/C+)⊗Zq have the same Jordan-Hölder series as Zq[∆
+]-modules,

here ∆+ = Gal(K+/Q). This is a refinement of the plus class number formula (Prop. 1.8).
Note that R−/S− and E+/C+ are cyclic (??????) hence we obtain the following two results as

corollaries:

Proposition 1.12. Let q be a prime such that q ∤ p(p− 1). Then S ⊗Z Zq annihilates Cl(K)⊗Z Zq.

Theorem 1.13 (Thaine’s Theorem). Let q be a prime such that q ∤ p(p−1)
2 . Let R+ = Zq[∆

+]. Then

2 ·AnnR+

(
(E+/C+)⊗Z Zq

)
⊆ AnnR+

(
Cl(K+)⊗Z Zq

)
.

In fact, we have the Stickelberger’s Theorem which is slightly stronger than Proposition 1.12:

Theorem 1.14 (Stickelberger’s Theorem). The Stickelberger ideal S annihilates Cl(K).

We present a proof of Stickelberger’s Theorem in §2, and a proof of the following weak version of
Thaine’s Theorem in §3, without using the refinement of class number formula.

Theorem 1.15. Let q be a prime such that q ∤ p(p− 1). Let R+ = Fq[∆
+]. Then

AnnR+

(
(E+/C+)⊗Z Fq

)
⊆ AnnR+

(
Cl(K+)⊗Z Fq

)
.

2. Stickelberger’s Theorem

Recall that K = Q(ζp), ∆ = Gal(K/Q) and R = Z[∆]. We are going to prove the Stickelberger’s
Theorem (Thm. 1.14), namely, the Stickelberger ideal S := R ∩Rθ annihilates Cl(K).

Lemma 2.1. Let C ∈ Cl(K) be an ideal class. Then there exists infinitely many prime ℓ ≡ 1 (mod p)
such that there exists a prime l of K above ℓ satisfying l ∈ C.

Proof. Consider the Hilbert class field HK of K. Then HK/Q is Galois. Consider the element σC ∈
Gal(HK/K) ⊂ Gal(HK/Q) corresponding to C. By Chebotarev density theorem, there exists infinitely
many prime L of HK such that FrobL(HK/Q) = σC. Take ℓ = L ∩ Z and l = L ∩ OK then they satisfy
the desired condition. □

Therefore we only need to prove that for any such l and any β ∈ R such that βθ ∈ R, lβθ is principal.
Let L = Q(ζℓ), then K and L are linearly disjoint over Q. Let M = KL:

L M
(Z/ℓZ)×

|||
| ∆

BBB
B

l Q(ζp) = K

∆
AAA

A
L = Q(ζℓ)

(Z/ℓZ)×}}}
}

(ζℓ − 1)

ℓ Q ℓ

Since ℓ is unramified in K and is totally ramified in L, the l is totally ramified in M . Let L be the
unique prime ideal of M over l, then lOM = Lℓ−1. The (ζℓ − 1)OL is the unique prime ideal of L above
ℓ, and ℓOL = (ζℓ − 1)ℓ−1OL. Any prime of K above ℓ is of form lσ for a unique σ ∈ ∆, and we have

ℓOK =
∏

σ∈∆ lσ. Similarly, any prime of M above ℓ is of form Lσ for a unique σ ∈ Gal(M/L)
∼−→

Gal(K/Q) = ∆, and we have (ζℓ − 1)OM =
∏

σ∈Gal(M/L) L
σ as well as ℓOM =

∏
σ∈Gal(M/L)(L

σ)ℓ−1.

Let s be a generator of (Z/ℓZ)× and define a surjective group homomorphism χ : (Z/ℓZ)× → µp by

s 7→ ζp. Consider the Gauss sum G(χ, ζℓ) ∈ OM . We have G(χ, ζℓ) ·G(χ, ζℓ) = ℓ, therefore we may write

G(χ, ζℓ)OM =
∏

σ∈Gal(M/L)

(Lσ)r(σ),

where for each σ, r(σ) is an integer satisfying 0 ≤ r(σ) ≤ ℓ−1. If a ∈ (Z/pZ)×, denote by r(a) := r(σ−1
a ).

Lemma 2.2. There exists an element c ∈ (Z/pZ)× such that for any a ∈ (Z/pZ)× we have r(a) =

(ℓ− 1)
{

ac
p

}
, here

{
ac
p

}
is the fractional part of ac

p . In particular, we have 0 < r(a) < ℓ− 1.
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Proof. Let a ∈ (Z/pZ)× be an element and denote σ := σ−1
a . Consider the quantity G(χ, ζℓ)/(ζℓ−1)r(a) ∈

M , then by definition it is a Lσ-unit. Since any prime above ℓ is totally ramified over M/K, for any
τ ∈ Gal(M/K), any σ ∈ Gal(M/L) and any x ∈ OM , we have xτ ≡ x (modLσ). Now we take τ to be
ζℓ 7→ ζsℓ , then we have

0 ̸≡ G(χ, ζℓ)

(ζℓ − 1)r(a)
≡
(

G(χ, ζℓ)

(ζℓ − 1)r(a)

)τ

(modLσ) .

On the other hand, we have G(χ, ζℓ)
τ =

∑
a∈(Z/pZ)× χ(a)ζsaℓ = χ(s−1)

∑
a∈(Z/pZ)× χ(a)ζaℓ = ζ−1

p G(χ, ζℓ)

as well as (ζℓ − 1)τ = ζsℓ − 1 = (ζℓ − 1)(ζs−1
ℓ + · · ·+ ζℓ + 1), hence

(
G(χ, ζℓ)

(ζℓ − 1)r(a)

)τ

=
ζ−1
p

(ζs−1
ℓ + · · ·+ ζℓ + 1)r(a)

· G(χ, ζℓ)

(ζℓ − 1)r(a)
≡

ζ−1
p

sr(a)
· G(χ, ζℓ)

(ζℓ − 1)r(a)
(modLσ) ,

therefore sr(a) ≡ ζ−1
p (modLσ), taking σ−1 and note that both side are in OK , we obtain sr(a) ≡

(ζ−1
p )σ

−1

= ζ−a
p (mod l). Note that OK/l ∼= Z/ℓZ and that ℓ is unramified in K, we have ζ−1

p ∈ (OK/l)×

is of exact order p, hence there exists c ∈ (Z/pZ)× (of course independent of a) such that ζ−1
p ≡

sc·(ℓ−1)/p (mod l). Therefore sr(a) ≡ sac·(ℓ−1)/p (mod l), which means r(a) ≡ ac · (ℓ − 1)/p (mod ℓ− 1),
combined with 0 ≤ r(a) ≤ ℓ− 1 we obtain the desired result. □

In the above proof we actually shows that for any τ ∈ Gal(M/K), G(χ, ζℓ)
τ/G(χ, ζℓ) ∈ µp ⊂ OK .

Therefore G(χ, ζℓ)
ℓ−1 ∈ OK . Note that for any σ ∈ Gal(M/L), we have lσOM = (Lσ)ℓ−1, hence

G(χ, ζℓ)
ℓ−1OK =

∏
σ∈Gal(M/L)

(lσ)r(σ) =

(
p−1∑
a=1

r(a)σ−1
a

)
l =

(
(ℓ− 1)σcθ

)
l

is a principal ideal; here we note that
∑p−1

a=1 r(a)σ
−1
a =

∑p−1
a=1(ℓ− 1)

{
ac
p

}
σ−1
a = (ℓ− 1)σcθ.

Let γ := (σ−1
c β)G(χ, ζℓ) ∈ M , then γℓ−1 = (σ−1

c β)G(χ, ζℓ)
ℓ−1 ∈ K and γℓ−1OK =

(
(ℓ− 1)βθ

)
l is the

(ℓ − 1)-th power of the fractional ideal (βθ)l of K. Hence the extension K(γ)/K is unramified outside
ℓ− 1 (exercise 2). However, K(γ) ⊂ M and M/K is is totaly ramified at ℓ, so we must have K(γ) = K,
γ ∈ K and γOK = (βθ)l is principal. This completes the proof of Stickelberger’s Theorem.

3. Thaine’s Theorem

In this section we prove Theorem 1.15.
Recall thatK+ = Q(ζp+ζ−1

p ), ∆+ = Gal(K+/Q), q is a prime not dividing p(p−1), and R+ = Fq[∆
+].

Recall that E := O×
K , E+ := O×

K+ , C :=
⟨

ζb
p−1

ζp−1 | b ∈ (Z/pZ)×
⟩
· µ(K) ⊂ E , and C+ := C ∩ E+.

Obviously we have (E+/C+) ⊗ Fq = E+/(E+)qC+. Note that
ζ−b
p −1

ζp−1 = −ζ−b
p

ζb
p−1

ζp−1 , so we also have

C =
⟨

ζb
p−1

ζp−1 | 2 ≤ b ≤ p−1
2

⟩
· µ(K).

Fact 3.1. The E+ ⊗ Fq is a cyclic Fq[∆
+]-module.

Lemma 3.2. Let C ∈ Cl(K+) ⊗ Fq be a class. Then there exists infinity many prime ℓ ≡ 1 (mod pq)
such that there exists a prime l of K+ above ℓ satisfying l ∈ C and such that the natural map

(3.1) E+ ⊗ Fq → (OK+/ℓOK+)× ⊗ Fq
∼=
∏

σ∈∆+

(OK+/lσ)× ⊗ Fq
∼=
∏

σ∈∆+

(Z/ℓZ)× ⊗ Fq

is injective.
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Proof. Let H be the maximal unramified abelian extension of K+ such that Gal(H/K+) is killed by q.
Then Gal(H/K+) ∼= Cl(K+)⊗ Fq and H/Q is Galois. Consider the following field extension diagram:

KH(ζq,
q
√
E+)

ooo
ooo

o
OOO

OOO

KH(ζq)

ooo
ooo

o
OOO

OOO
O

H(ζq,
q
√
E+)

ooo
ooo

o

KH

OOO
OOO

OOO
O H(ζq)

ooo
ooo

ooo
K+(ζq,

q
√
E+)

Hom(E+⊗Fq,µq)
ooo

ooo

K

⟨c⟩ OOO
OOO

OOO
O H

Cl(K +
)⊗F

q

K+(ζq)

F×
q

ooo
ooo

oo

∆+ OOO
OOO

O

K+

∆+ OOO
OOO

OOO
O Q(ζq)

F×
qooo

ooo
ooo

Q

Here by Kummer theory, we have the isomorphism of Gal(K+(ζq)/Q)-modules

Gal(K+(ζq,
q
√
E+)/K+(ζq))

∼−→ Hom(E+ ⊗ Fq, µq),

σ 7→
(
u 7→ ( q

√
u)σ

q
√
u

)
.

We note that the K, H and K+(ζq,
q
√
E+) are pairwise linearly disjoint over K+:

• the K and H(ζq,
q
√
E+) are linearly disjoint over K+ since p is totally ramified over K/K+ and

is unramified over H(ζq,
q
√
E+)/K+;

• the H and K+(ζq) are linearly disjoint over K+ since q is unramified over H/K+ and is totally
ramified over K+(ζq)/K

+;

• the H(ζq) and K+(ζq,
q
√
E+) are linearly disjoint over K+(ζq), since Gal(K+(ζq)/K

+) acts on

Gal(H(ζq)/K
+(ζq)) by trivial character, and acts on Gal(K+(ζq,

q
√
E+)/K+(ζq)) ∼= Hom(E+ ⊗

Fq, µq) by mod q cyclotomic character.

Hence we have Gal(KH(ζq,
q
√
E+)/K+) ∼= Gal(K/K+) × Gal(H/K+) × Gal(K+(ζq,

q
√
E+)/K+), and

KH(ζq,
q
√
E+)/Q is Galois.

Since E+ ⊗ Fq is a cyclic Fq[∆
+]-module, the Gal(K+(ζq,

q
√
E+)/K+(ζq)) ∼= Hom(E+ ⊗ Fq, µq) is also

a cyclic Fq[∆
+]-module. Let τ be a generator of it. Let σC ∈ Gal(H/K+) be the element corresponding

to C. Then by Chebotarev density theorem, there exists infinitely many prime L of KH(ζq,
q
√
E+) such

that FrobL(KH(ζq,
q
√
E+)/Q) is equal to

(1, σC, τ) ∈ Gal(K/K+)×Gal(H/K+)×Gal(K+(ζq,
q
√
E+)/K+(ζq))

⊂ Gal(K/K+)×Gal(H/K+)×Gal(K+(ζq,
q
√
E+)/K+)

= Gal(KH(ζq,
q
√
E+)/K+) ⊂ Gal(KH(ζq,

q
√
E+)/Q).

Take ℓ = L ∩ Z and l = L ∩ OK+ , we claim that they satisfy the desired condition. In fact we only
need to check that the map (3.1) is injective. Suppose u ∈ E+ is in the kernel of (3.1), then we have
(u mod lσ) ∈ ((O×

K+/l
σ)×)q ∼= (F×

ℓ )
q for any σ ∈ ∆+, i.e. u(ℓ−1)/q ≡ 1 (mod lσ) for any σ ∈ ∆+. Since

the τ is equal to the restriction of FrobL to K+(ζq,
q
√
E+), we have ( q

√
u)τ ≡ ( q

√
u)ℓ (modL), therefore

( q
√
u)τ/ q

√
u ≡ ( q

√
u)ℓ−1 = u(ℓ−1)/q ≡ 1 (modL). On the other hand, ( q

√
u)τ/ q

√
u ∈ µq ⊂ F×

ℓ , hence we
must have ( q

√
u)τ = q

√
u and q

√
u ∈ K+(ζq) since τ is a generator. This implies that u ∈ (K×)q (let σa be

a generator of Gal(K+(ζq)/K
+) ∼= F×

q , then 1 ̸= a ∈ F×
q hence 1− a ∈ F×

q ; we have ( q
√
u)σa = ζ · q

√
u for

some ζ ∈ µq, let b = (1−a)−1 ∈ F×
q then it’s easy to see that ζb · q

√
u is fixed by σa), hence u ∈ (E+)q. □

Therefore we only need to prove that for any such l, if β ∈ AnnR+ ((E+/C+)⊗Z Fq), i.e. if uβ ∈
(E+)qC+ for all u ∈ E+, then lβ ∈ Cl(K+)q.
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Let L = Q(ζℓ), then K+ and L are linearly disjoint over Q. Let M+ = K+L:

L M+
(Z/ℓZ)×

yy
yy ∆+

EE
EE

l Q(ζp + ζ−1
p ) = K+

∆+
FF

FF
L = Q(ζℓ)

(Z/ℓZ)×zz
zz

(ζℓ − 1)

ℓ Q ℓ

Since ℓ is unramified in K+ and is totally ramified in L, the l is totally ramified in M+. Let L be
the unique prime ideal of M+ over l, then lOM+ = Lℓ−1. The (ζℓ − 1)OL is the unique prime ideal of
L above ℓ, and ℓOL = (ζℓ − 1)ℓ−1OL. Any prime of K+ above ℓ is of form lσ for a unique σ ∈ ∆+,
and we have ℓOK+ =

∏
σ∈∆+ lσ. Similarly, any prime of M+ above ℓ is of form Lσ for a unique

σ ∈ Gal(M+/L)
∼−→ Gal(K+/Q) = ∆+, and we have (ζℓ − 1)OM+ =

∏
σ∈Gal(M+/L) L

σ as well as

ℓOM+ =
∏

σ∈Gal(M+/L)(L
σ)ℓ−1.

Note that
∏

σ∈∆+(Z/ℓZ)× ⊗ Fq is (non-canonically) isomorphic to Fq[∆
+] as a Fq[∆

+]-module, given

by (sn(σ))σ∈∆+ 7→
∑

σ∈∆+ n(σ)σ, where s is a fixed generator of (Z/ℓZ)×. We can conclude that

under this isomorphism and (3.1), E+ ⊗ Fq is isomorphic to Fq[∆
+]sum=0 as a Fq[∆

+]-module, where
sum : Fq[∆

+] → Fq,
∑

σ∈∆+ n(σ)σ 7→
∑

σ∈∆+ n(σ). This is by counting dimension and note that for any

u ∈ E+ we have [u] = [uq+1] ∈ E+/(E+)q and NK+/Q(u
q+1) = 1, it’s easy to see that the image of uq+1

in Fq[∆
+] is contained in Fq[∆

+]sum=0.

Lemma 3.3. Let δ ∈ (C+)2 be an element. Then there exists an element ε ∈ O×
M+ such that NM+/K+(ε) =

1 and ε ≡ δ (modLσ) for all σ ∈ Gal(M+/L) (or equivalently, ε ≡ δ (mod ζℓ − 1)).

Proof. Let c be the unique non-trivial element of Gal(M/M+), which is also the unique non-trivial
element of Gal(K/K+), here the field M = KL is defined in §2. First we claim that (C+)2 = NK/K+(C):

in fact, for b ∈ (Z/pZ)× we have
( ζb

p−1

ζp−1

)c
=

ζ−b
p −1

ζ−1
p −1

= ζ1−b
p

ζb
p−1

ζp−1 , therefore

NK/K+(C) =


(p−1)/2∏

b=2

(ζ1−b
p )m(b)

(p−1)/2∏
b=2

(
ζbp − 1

ζp − 1

)2m(b)
∣∣∣∣∣∣ m(b) ∈ Z

 ,

as well as

C+ =

γ

(p−1)/2∏
b=2

(
ζbp − 1

ζp − 1

)m(b)
∣∣∣∣∣∣∣
m(b) ∈ Z, γ ∈ µ(K) = µ2p such that

γ2 =

(p−1)/2∏
b=2

(ζ1−b
p )m(b) ∈ µp

 ,

here we note that once m(b) is given, there are always two γ satisfy the condition.
Therefore if δ ∈ (C+)2 = NK/K+(C), we may write

δ = NK/K+

 ∏
b∈(Z/pZ)×

(ζbp − 1)m(b)

 =
∏

b∈(Z/pZ)×

(
(ζbp − 1)(ζ−b

p − 1)
)m(b)

where m(b) satisfies
∑

b∈(Z/pZ)× m(b) = 0. We take ε to be

ε := NM/M+

 ∏
b∈(Z/pZ)×

(ζbp − ζℓ)
m(b)

 =
∏

b∈(Z/pZ)×

(
(ζbp − ζℓ)(ζ

−b
p − ζℓ)

)m(b)
,

then it is easy to check that ε satisfies all the desired properties. □

Now let u0 ∈ E+ be an element which maps to a generator of E+ ⊗Fq as a Fq[∆
+]-module (note that

E+⊗Fq
∼= Fq[∆

+]sum=0 ∼−→ Fq[∆
+]/

∑
σ∈∆+ σ which is a cyclic Fq[∆

+]-module), and let u = uq+1
0 ∈ E+,

then obviously u and u0 map to the same element of E+ ⊗Fq (by abuse of notation, we denote its image

in Fq[∆
+] by u). Since uβ

0 ∈ (E+)qC+, we may write uβ
0 = vq0δ0 for some v0 ∈ E+ and δ0 ∈ C+, and write

uβ = vqδ with v = vq+1
0 ∈ E+ and δ = δq+1

0 ∈ (C+)q+1 ⊂ (C+)2 since q is odd. Let ε be the element
corresponding to δ in the above lemma.

The generator s of (Z/ℓZ)× gives a generator τ of Gal(M+/K+) by ζℓ 7→ ζsℓ . The τ 7→ ε extends to
a cocycle Gal(M+/K+) → (M+)× by the condition NM+/K+(ε) = 1. Hence by Hilbert’s Theorem 90,
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H1(M+/K+, (M+)×) = 0, the above cocycle is a coboundary, which means that there exists α ∈ (M+)×

such that ατ/α = ε.
The fractional ideal αOM+ is stable by Gal(M+/K+)-action, hence by considering prime ideal de-

composition, αOM+ = (aOM+)b for some fractional ideal a of K+ whose prime ideal decomposition
only contains unramified primes over M+/K+, and b is a fractional ideal of M+ whose prime ideal
decomposition only contains ramified primes over M+/K+, namely, {Lσ}σ∈Gal(M+/L). This means that

(3.2) αOM+ = (aOM+)
∏

σ∈Gal(M+/L)

(Lσ)r(σ),

where for each σ, r(σ) is an integer.
Similar to the proof of Lemma 2.2, for any σ ∈ Gal(M+/L), the α/(ζℓ − 1)r(σ) ∈ M+ is a Lσ-unit,

and

0 ̸≡ α

(ζℓ − 1)r(σ)
≡
(

α

(ζℓ − 1)r(σ)

)τ

=
εα

(ζsℓ − 1)r(σ)
≡ ε

sr(σ)
· α

(ζℓ − 1)r(σ)
(modLσ) ,

therefore sr(σ) ≡ ε ≡ δ (modLσ) for any σ. Note that sr(σ) and δ are in OK+ , we obtain sr(σ) ≡
δ (mod lσ) for any σ, hence the image of δ (also equals the image of uβ) under the map

E+ ⊗ Fq ↪→ (OK+/ℓOK+)× ⊗ Fq
∼= Fq[∆

+]

is
∑

σ∈∆+ r(σ)σ. Since Fq[∆
+] = Fq[∆

+]sum=0 ⊕Fq ·
∑

σ∈∆+ σ = Fq[∆
+] ·u⊕Fq ·

∑
σ∈∆+ σ, this implies

that β ∈ R+ can be written as β = β1

∑
σ∈∆+ r(σ)σ + β2

∑
σ∈∆+ σ for some β1 ∈ Fq[∆

+] and β2 ∈ Fq.
The NM+/K+ of (3.2) reads

NM+/K+(α)OK+ = aℓ−1
∏

σ∈∆+

(lσ)r(σ) = aℓ−1 ·

( ∑
σ∈∆+

r(σ)σ

)
l

which is a principal ideal, hence
(∑

σ∈∆+ r(σ)σ
)
l ∈ Cl(K+)q. On the other hand

(∑
σ∈∆+ σ

)
l =∏

σ∈∆+ lσ = ℓOK+ is principal, so lβ ∈ Cl(K+)q. This completes the proof of Theorem 1.15.

4. Catalan Equation

Theorem 4.1 (Catalan Conjecture). Let p, q ≥ 2 be two integers, then the equation

xp − yq = 1

has no solutions (x, y) in positive integers other that (x, y, p, q) = (3, 2, 2, 3).

The cases of q = 2 and p = 2 are proved by Lebesgue and Chao Ko, respectively. Then to prove the
conjecture, it reduces to the following

Main Theorem [Mihailescu]. Let p ̸= q be two odd primes. Then the equation{
xp − yq = 1,

x, y ∈ Z \ {0}

has no solutions. (We call the above Diophantine equation (∗) the Catalan equation.)

We give some elementary remarks. First, xp − yq = 1 is equivalent to (−y)q − (−x)p = 1.

Lemma 4.2. For any integer x ̸= 1, (
x− 1,

xp − 1

x− 1

)
= 1 or p.

Moreover, p|x− 1 if and only if p
∣∣∣xp − 1

x− 1
, and in this case p2 ∤

xp − 1

x− 1
.

Proof. Note that (z+1)p−1
z − p ≡ 0 mod z for any integer z ̸= 0. □

Lemma 4.3. If (x, y) is a solution to the Catalan equation. Then(
x− 1,

xp − 1

x− 1

)
= p ⇐⇒ p|y,

(
y + 1,

yq + 1

y + 1

)
= q ⇐⇒ q|x.

Lemma 4.4. Assume that q|x, then
(i) y ≡ −1

(
mod qp−1

)
and |y| ≥ qp−1 − 1.

(ii) Moreover, if (p, q − 1) = 1, then |x| ≥ qp−1 + q.
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Proof. By Lemma 4.3, we may write

y + 1 = qp−1ap,
yq + 1

y + 1
= qbp; x = qab.

Thus (i) follows and moreover, we have

qp−1
∣∣ (y + 1)

∣∣∣ yq + 1

y + 1
− q = q(bp − 1),

and therefore bp ≡ 1 mod qp−2. Note that (Z/qp−2Z)× ∼= F×
q × Z/qp−3Z, and by assumption (p, q(q −

1)) = 1, we have that b ≡ 1 mod qp−2. It is easy to see that b > 1, thus

|x| ≥ qb ≥ q(qp−2 + 1) = qp−1 + q.

□

Proposition 4.5 (Cassels). Assume that (x, y) is a solution to the Catalan equation. Then we have

(1) q|x and p|y;
(2) x ≡ 1

(
mod pq−1

)
and y ≡ −1

(
mod qp−1

)
;

(3) |x| ≥ max(pq−1(q − 1)q − 1, qp−1 + q) and |y| ≥ max(qp−1(p− 1)p − 1, pq−1 + p).

Proof. It is easy to see that parts (2) and (3) follow from (1) by Lemma 4.4. Assume that q ∤ x. Then(
y + 1,

yq + 1

y + 1

)
= 1 and y + 1 = bp for some integer b ̸= 0, 1. Thus xp − (bp − 1)q = 1. Consider the

increasing function f(x) = xp − (bp − 1)q with b ̸= 0, 1 constant and x variable. It is easy to see that
f(bq) > 1 and if p > q, then{

(bq − 1)1/q < (bp − 1)1/p, if b > 1;

(1 + (−b)q)1/q > (1 + (−b)p)1/p, if b < 0,

and therefore f(bq − 1) < 0. Thus we have shown that if p > q then q|x, and by symmetric if q > p then
p|y.

We now assume p > q and want to show that p|y. Suppose that p ∤ y, then x−1 = aq for some integer
a ̸= 0, and therefore y = apF (a−q), where F is the function

F (t) = ((1 + t)p − tp)1/q.

An observation is that the Taylor series around t = 0 of F (t) and that of (1 + t)p/q have the same terms

of degree i < p (which is
(
p/q
i

)
ti), since near t = 0 we have that

F (t) =

∞∑
i=0

(
1/q

i

)
((1 + t)p − tp − 1)i, (1 + t)p/q =

∞∑
i=0

(
1/q

i

)
((1 + t)p − 1)i.

Now for integer k, p/q < k < p, consider the q-integer

β = βk := aqk (F (t)− Fk(t))
∣∣
t=a−q ∈ Z[q−1], Fk(t) =

k∑
i=0

(
p/q

i

)
ti

whose q-adic valuation is ordq
(
p/q
k

)
= −k − ordq k!. Thus we have a lower bound of |β|:

|β| ≥ qordq β = q−k−ordq k!.

On the other hand, since q|x and (p, q − 1) = 1, by Lemma 4.4, |aq + 1| = |x| ≥ qp−1 + q. This
produces a contradictory upper bound of |β| by applying the below lemma to t = a−q and k = [p/q] + 1:

|β| ≤ |a|q

(|a|q − 1)2
≤ 1

|a|q − 2
≤ q1−p < q−k−ordq k!.

□

Lemma 4.6. For k = [p/q] + 1, we have

|F (t)− Fk(t)| ≤
|t|k+1

(1− |t|)2
, ∀t ∈ R, |t| < 1.
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Proof of Lemma 4.6. For |t| < 1, we have

|F (t)− Fk(t)| ≤
∣∣∣F (t)− (1 + t)p/q

∣∣∣+ ∣∣∣(1 + t)p/q − Fk(t)
∣∣∣ .

Now the first term can be estimated by the mean value theorem for the function x 7→ x1/q:

|F (t)− (1 + t)p/q| ≤ q−1|t|p|t′|q
−1−1 ≤ q−1|t|p(1− |t|)p(q

−1−1) ≤ q−1|t|p(1− |t|)−2.

Here t′ ∈ R is between (1 + t)p and (1 + t)p − tp so that |t′| ≥ (1 − |t|)p. To estimate the second term,
by the remainder term of Taylor series expansion of G(t) := (1 + t)p/q (note that Gk = Fk for k < p),
we have∣∣∣(1 + t)p/q − Fk(t)

∣∣∣ = ∣∣∣∣ tk+1

(k + 1)!
Gk+1(t′)

∣∣∣∣ ≤ ∣∣∣∣( p/q

k + 1

)∣∣∣∣ |t|k+1(1− |t|)−k−1+p/q ≤ 1

k + 1
|t|k+1(1− |t|)−2.

Here t′ ∈ R is between 0 and t so that |1 + t′| ≤ 1− |t|.
Now combining two terms and noting that p > k + 1, k, q ≥ 2, we have

|F (t)− Fk(t)| ≤
(
|t|p

q
+

|t|k+1

k + 1

)
(1− |t|)−2 ≤ |t|k+1(1− |t|)−2.

□
4.1. Selmer group and Mihailescu element. Let K = Q(µp) and ∆ = Gal(K/Q). Denote IK the
group of fractional ideals of K. Consider the selmer group

Sel(K,µq) := ker
(
K×/K×,q → IK/qIK , [ξ] 7→ (ξ)

)
.

Let E be the group of global units of K and Cl(K) the ideal class group of K. We have a exact sequence
of Fq[∆]-modules:

0 → E/Eq → Sel(K,µq) → Cl(K)[q] → 0.

Here the first map is embedding and the second is given by [ξ] 7→ (ξ)1/q.

Proposition 4.7. Let (x, y) be a solution of Catalan’s equation in Z2
̸=0, then:

ξ :=
[x− ζ

1− ζ

]
∈ Sel(K,µq),

here ζ is a fixed primitive p-th root of unity.

Remark 4.8. For any θ ∈ Fq[∆]deg=0,

[
x− ζ

1− ζ

]θ
= [(x − ζ)θ] ∈ Sel(K,µq). In particular,

[
x− ζ

1− ζ

]−
=

[(x− ζ)−] ∈ Sel(K,µq)
−.

4.2. Stickelberger’s theorem and [(x − ζ)−]. The Stickelberger element in Q[∆] is defined by Θ =
p−1∑
i=1

{
i

p

}
σ−1
i . The Stickelberger ideal is defined by I = Z[∆] ∩ΘZ[|∆].

Remark 4.9.

(1) The Stickelberger ideal is generated by θa = (a− σa)Θ =

p−1∑
i=1

[ai
p

]
σ−1
i for (a, p) = 1.

(2) (1− τ)I is generated by (1− ι)(θa+1 − θa), for 1 ≤ a ≤ (p− 1)/2.

Theorem 4.10 (Stickelberger). [6]I ⊂ AnnZ[∆](Cl(K)). In particular,(I⊗Fq)
− ⊂ AnnFq [∆]Sel(K,µq)

−.

Theorem 4.11. [8][A] Suppose (x, y) ∈ Z2
̸=0 is a solution of Catalan’s equation, then

(0) p|h−
q and q|h−

p . In particular, p, q ≥ 41.

(1) q2|x and p2|y.
(2) (q, p− 1) = 1 and (p, q − 1) = 1.

Remark 4.12. Idea of the proof:

(0) The element [(x− ζ)−] is nontrivial in Sel(K,µq)
− ≃ Cl(K)[q]−.

(1) Using Stickelberger element, we can show that AnnFq [∆]([(x − ζ)−]) ̸= 0. And we thus have

(1 − ζx)θ = bq for some θ ∈ (1 − τ)Z[∆] (For example, θ = (1 − τ)θ2.) such that q ∤ θ and
b ∈ K×. As q|x, we know that (1 − ζx)θ = bq ≡ 1 (mod q). Thus (1 − ζx)θ ≡ 1

(
mod q2

)
, thus

q2|x.
10



(2) To show (p, q− 1) = 1, reduce to show q < 4p2. Note that for θ ∈ I(1− τ), let αθ ∈ K× be such
that (x − ζ)θ = αq

θ, then αθ is very close to some ζq under a fixed embedding K → C. When
q ≥ 4p2, We will find a θ such that αθ and αθ are very close to 1 and ||θ|| is very small such that
the upper bound ofN(αθ−1) will small than the lower bound ofN(αθ−1) ≥ (1+|x|)−||θ||(p−1)/2q.

Proof.
(0)

Fact 4.13. Let α, β ∈ OK such that α− β ∈ O×
K and α/β ∈ K×,q, then we can produce a unit

γ := (α1/q − β1/q)q ∈ O×
K ,

where α1/q, β1/q are chosen such that (α1/q)q = α, (β1/q)q = β and α1/q/β1/q ∈ K.

If
[
x−ζ

x−ζ

]
∈ Sel(K,µq) is trival, then x−ζ

z−ζ
∈ K×,q. Let α = x−ζ

1−ζ and β = x−ζ
1−ζ , then α, β ∈ OK and

α − β = ζ−ζ
1−ζ ∈ O×

K . Then we have a unit γ ∈ O×
K as in the above fact. As K has no real embedding,

N(γ) = 1. Note that γ does not depend on the choice of α1/q and β1/q, because ζq /∈ K. Let π be the
unique prime ideal of K above p. We will study π-adic properties of the equation N(γ) = 1.

Write α = 1 + µ here µ = x−1
1−ζ with pq−1π−1|µ. And we have β = −ζ(1 + µ) with pq−1π−1|µ. We

may choose

w := (1+µ)1/q :=

∞∑
i=0

(
1/q

i

)
µi ∈ K∩Kπ, and w′ := (−ζ(1+µ))1/q := −ζ−1/q

∞∑
i=0

(
1/q

i

)
µi ∈ K∩Kπ.

We have w/w′ ∈ K follows from w ≡ 1 (modπ), w′ ≡ −1 (modπ) and the following fact:

Fact 4.14. Let δ ∈ K be the unique element such that δq = x−ζ

x−ζ
, then δ ≡ −1 (modπ).

Proof. This is because 1 ≡ δδ ≡ δ2 (modπ) and δq ≡ −1 (modπ). □

N(w − w′)q ≡ 1
(
modµ2

)
implies w − w′ ≡ 1 + ζ

(
modµ2

)
: By computation we have:

N(w − w′)q ≡ 1 +
(x− 1)(1− q)

2q
(modπ(x− 1)) ,

Thus p|1− q and

w − w′ ≡ (1 + µ/q) + ζ−1/q(1 + µ/q) ≡ 1 + ζ
(
modµ2

)
.

By the above analysis, we may consider expansion of N(w − w′)q modulo µ3. It turns out that

N(w − w′)q ≡ 1 +
(1− q)(x− 1)2

2q

1− p2

12

(
modµ3

)
,

thus pq−1|π
3(q−1)

3 , contradiction.

(2) We first reduce to show q < 4p2: Write y + 1 = qp−1ap, then 1 ≡ qp−1ap ≡ ap (mod p) and hence
ap ≡ 1

(
mod p2

)
. As p2|y, we have qp−1 ≡ 1

(
mod p2

)
. If p|q − 1 then qp ≡ 1

(
mod p2

)
, thus p2|q − 1.

Fix an embedding K → C. Suppose that q ≥ 4p2, by the following lemma and the facts |x| > qp−1 and
q > 5 we get the contradiction.

Lemma 4.15. If q ≥ 4p2, then there exists θ ∈ I− with ||θ|| ≤ 3q
p−1 such that N(αθ − 1) ≤ 2p−1

(|x|+1)2 , here

αθ ∈ K× is such that (x− ζ)θ = αq
θ.

Proof. • We have an injective homomorphism:

(1− τ)AnnZ[∆]([(x− ζ)−]) → {α ∈ K×| ∃ζq ∈ µq such that |ϕ(α)− ζq| ≤
||θ||

q(|x| − 1)
}

θ 7→ αθ (such that (x− ζ)θ = αq
θ).

– Existence of ζq: Exists ζq such that q arg(αθζ
−1
q ) = arg(αq

θ). Note that |αθ| = 1, thus

|α− ζq| < | arg(αθζ
−1
q )| ≤ 1/q| log(1− ζ/x)θ| ≤ ||θ||

q(|x| − 1)
.

Here the last inequality follows from for |z| < 1, | log(1 + z)| ≤ |z|
1−|z| , here the log is the

principle branch of the logarithm.
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– Injectivity:(i) x−σ(ζ)
1−ζ are co-prime to each other; (ii) The lower bound of |x| implies x−σ(ζ)

1−ζ

is not unit.
• If p, q ≥ 5 and q ≥ 4p2, then exists at least q + 1 element in I− ⊂ (AnnZ[∆][(x− ζ)−]) with size

||θ|| ≤ 3
2

q
p−1 .

Thus by box principle, exists θ′, θ′′ such that corresponding to same ζq, thus can get upper
bound of |αθ′−θ′′ − 1|: |αθ′−θ′′ − 1| ≤ |αθ′ − ζq|+ |αθ′′ − ζq| ≤ 3

(p−1)(|x|−1) . Thus

N(αθ′−θ) ≤
2p−1

(|x|+ 1))2
.

– Consider the stickelberger element θa =

p−1∑
i=1

[ai
p

]
σ−1
i , 1 ≤ i ≤ (p − 1)/2. Then ei :=

(1− τ)(θi+1 − θi) is a Z-basis of I− and has the property that half of coefficients equals to
1 and half of coefficients equals to −1. By using this fact, under the restriction q ≥ 4p2,
exists at least q + 1 element in I− with || · || ≤ 3q

p−1 .

□

□

Remark 4.16. Let E be the group of global units of K, C the subgroup of E generated by cyclic units

i.e. the subgroup generated by roots of unity and ζ
a
2 −ζ− a

2

ζ
1
2 −ζ− 1

2
, a = 2, · · · , (p − 1)/2. Let Cq the subgroup

of C generated by root of unity and elements which congruent to 1 modulo q2.

(1) Let Selq-str,p-rel(K,µq) be the subgroup of K×/K×,q consists of ξ such that the prime decom-
position of (ξ) is a q-th power outside primes above p and ξ is a q-th power at every prime
divides q. q2|x implies that [x − ζ] ∈ Selq-str,p-rel(K,µq). As q2|x, thus for any θ ∈ Fq[∆]+, if
(x− ζ)θ ∈ CK×,q/K×,q, then (x− ζ)θ ∈ CqK

×,q/K×,q.
(2) (q, p − 1) = 1 implies that R = Fq[∆] is a semisimple algebra. Note that E/Eq is a cyclic

R-module. Consider the filtration of E/Eq,

CqE
q/Eq ⊂ CEq/Eq ⊂ E/CEq ⊂ EEq,

we have

AnnR(CqE
q/Eq) ·AnnR(CEq/Eq) ·AnnR(E/CEq) = AnnR(E/Eq) = NR

4.3. Rigidity of [x − ζ]+. Let (x, y) be a solution to the Catalan equation and ζ ∈ µp be a primitive
p-th root of unity (will viewed as an element in C). The algebraic number

x− ζ ∈ K := Q(µp) ⊂ C

will play a key role in the story. The following rigidity property of x − ζ is important to the proof of
Catalan conjecture. Let ∆ = Gal(K/Q), σ : (Z/pZ)× ∼−→ ∆ the isomorphism such that σa(ζ) = ζa.
Denote by

Z[∆]+ = {
∑
a

naσa ∈ Z[∆] | na = np−a} = (1 + σ−1)Z[∆],

denote by deg : Z[∆] → Z be the degree map deg(
∑

naσa) =
∑

a nσ. Then we have

Theorem 4.17 (Mihailescu). [2] If θ ∈ (1 + τ)Z[∆] with q|deg θ such that (x − ζ)θ ∈ K×,q, then
θ ∈ qZ[∆].

Proof. Note that if α ∈ K×,q, then there exists a unique α1/q ∈ K×. Consider

(x− ζ)θ/q = xdeg θ/q(1− ζx−1)θ/q = xdeg θ/qG(x−1),

where G(t) is the analytic function around t = 0 defined as follows. Write θ =
∑

naσa and fix an
embedding of ζ + ζ−1 ∈ R, then

G(t) = (1− ζt)θ/q =
∏
a

(1− ζat)na/q =
∏
a

∞∑
i=0

(
na/q

i

)
(−ζa)iti

=

∞∑
k=0

 ∑
∑

ia=k

∏
a

(
na/q

ia

)
(−ζa)ia

 tk =

∞∑
k=0

ak
k! · qk

tk,
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where the summation over a should be regarded as summation over a mod ± 1 using θ ∈ Z[∆]+

ak = k!qk
∑

∑
a ia=k

∏
a

(
na/q

ia

)
(−ζa)ia

=
∑

∑∑
ia=k

k!∏
a ia!

∏
a

na(na − q) · · · (na − (ia − 1)q)(−ζa)ia ∈ OK

≡

(
−
∑
a

naζ
a

)k

(mod q)

Note that q is unramified over K, it is enough to show that q|ai for some i > 0. We may assume that
θ =

∑
a naσa with

na ≥ 0, ∀a; 0 < k := deg θ/q ≤ p− 1

2
,

and we will show that q|ak. Consider

β := qk+ordq k!xk
(
G(x−1)−Gk(x

−1)
)
∈ OK , β ≡ ak mod q.

Here we have xkG(x−1) ∈ OK since na ≥ 0 for all a. We will actually show that β = 0 so that q|ak and
complete the proof. Comparing G(t) and H(t) := (1− t)−k, by Taylor’s theorem

|β| ≤ qk+ordq k!|x|k
(
H(|x|−1)−Hk(|x|−1)

)
≤ qk+ordq k!|x|k

∣∣∣∣|x|−(k+1)

(
−k

k + 1

)
(1− |x|−1)−k−(k+1)

∣∣∣∣ < 1

where the last inequality follows from |x| ≥ qp−1 + q by Proposition 4.5 and 0 < k ≤ (p− 1)/2.
Note that θ ∈ Z[∆]+. For any σ ∈ ∆ and t ∈ Q with |t| < 1,(

(1− ζt)θ/q
)σ

= (1− ζt)σθ/q ∈ R.

(Since they are q-th root of (1 − ζt)θ ∈ R.) Thus by the same argument, |βσ| < 1 for all σ ∈ ∆, and
therefore β = 0 and q|am. □

4.4. Thaine’s theorem and [x−ζ]+. As (p−1, q) = 1, we have natural isomorphism of Zq[∆]-algebras

Zq[∆] =
⊕
[χ]

Zq[Imχ],

here χ runs over all q-adic characters of ∆ and [χ] is the Gal(Qq/Qq)-orbit of χ. For any Zq[G]-module
M , denote Mχ = M ⊗Zq [G] Zq[Imχ].

Theorem 4.18. [4][5] Suppose (q, p − 1) = 1, then for any χ : ∆ → Qq a even character, then
#(E/C)[q∞]χ = #Cl(K)[q∞]χ. In particular, two Zq[∆]-modules (E/C)[q∞]χ, Cl(K)[q∞]χ have same
Jordan-Holder series.

Corollary 4.19. E/CEq ≃ Cl(K)[q]+ as R-modules.

Corollary 4.20.

(Sel(K,µq)
+)AnnR(E/CEq) ⊂ CEq/Eq

here view CEq/Eq as subgroup of Sel(K,µq).

Remark 4.21. The proof of the corollary only use the property AnnR(E/CEq) ⊂ AnnRCl(K)[q]+. And
this property can be prove only using a result of Thaine: AnnZq [∆]((E/C)[q∞]) ⊂ AnnZq [∆](Cl(K)[q∞]+).

Corollary 4.22. Assume the Catalan’s equation has a solution in Z2
̸=0, then

AnnR(CqE
q/Eq)AnnR(E/CEq) ⊂ AnnR(E/Eq).

Proof. Consider [(x − ζ)+] =
[
x−ζ
1−ζ

+
]
[(1 − ζ)−1]+ ∈ K×/K×,q. Note that

[
x−ζ
1−ζ

]+
∈ Sel(K,Q) and

[1 − ζ]θ is represented by cyclotomtic unit for any θ with deg θ = 0. By Corollary 4.20, for any θ ∈
AnnR((E/CEq)) ∩Rdeg=0, we have [(x− ζ)+]θ ∈ CK×/K×,q, and thus in CqK

×/K×,q by first remark
of Remark 4.16. By rigidity of Mihailescu element

0 = AnnR(CqE
q/Eq)(AnnR((E/CEq)) ∩Rdeg=0).

13



As the norm element N kill E/Eq and Fq ·N +Rdeg=0 = R, thus

AnnR(CqE
q/Eq)AnnR(E/CEq) ⊂ AnnR(CqE

q/Eq)(AnnR(E/CEq) ∩Rdeg=0 + FqN) ⊂ AnnR(E/Eq)

□

4.5. Proof of the main theorem.

Theorem 4.23. [1][3] Assume q < p are two odd primes, then the following equation

xp − yq = 1

has no solution in nonzero integers.

Proof. If (x, y) is a solution, by Corollary 4.22 and the second remark of Remark 4.16, we have

AnnR(CEq/CqE
q) = 0,

contradict with the following proposition

Proposition 4.24. If q < p, then CqE
q ̸= CEq.

Proof. Let ζ be a primitive p-th root of unity, consider the cyclotomic unit 1+ζq = 1−ζ2q

1−ζq . If 1+ζq ∈ Cq,

then 1 + ζq ≡ uq
(
mod q2

)
for some u ∈ E. We have (1 + ζ)q ≡ uq (mod q), as q is unramified in K,

1 + ζ ≡ u (mod q), thus (1 + ζ)q ≡ uq
(
mod q2

)
. This implies that (1 + ζ)q ≡ 1 + ζq

(
mod q2

)
. Consider

the polynimial 1/q((1 + T )q − T q − 1) ∈ Z[T ], it has p− 1 distinct solution in Z[µp]/(q
2), we must have

p ≤ q, contradiction. □

□

5. Femart Equation

Let K = Q(µp).

Theorem 5.1. [6] Let p be a odd prime that does not divides #Cl(K), then the equation

xp + yp = zp

has no solution in nonzero integers.

Proof. Let (x, y, x) be a solution of Femart equation in (Z\{0})3.
• If p ∤ xyz, then for any primitive p-th root of unity, x+ ζ±y ∈ Sel(K,µp) and x+ ζ±y is a unit

at p. Let E (resp. O) be the group of units (resp. integers)of K and Cl(K) the ideal class group
of K. Consider the exact sequence:

0 → E/Ep → Sel(K,µp) → Cl(K)[p] → 0.

By assumption, Cl(K)[p] = 0. And we have a natural map

α : E/Ep → Ev/E
p
v ≃ 1 + πEv/(1 + πEv)

p ↠ 1 + πO/1 + pO,

here v is the prime of K above p and π = 1 − ζ. The image of x + ζ±y in 1 + πO/1 + pO is
x+ζ±y
x+y . As every element x in Z[ζ] has the property xp ≡ a (mod p) for some a ∈ Z. Write

x+ζ±y
x+y = ζ±ru+a ∈ 1+πO/1+pO for u+ ∈ O×,+

E and a ∈ Z, then we have x+ζy
x+y = ζ2r x+ζ−1y

x+y in

1 + πO/1 + pO. Thus x+ ζy = ζ2r(x+ ζ−1y) (mod p). This will contradicts with the following
fact.

Fact 5.2. ζi, i = 1, · · · , p− 1 is an integral basis of O.

• If p|xyz, may assume p|z and (p, xy) = 1. Let ζ be a primitive p-th root of unity. We may prove a
stronger statement: There is no solution of equation xp+yp = u(1−ζ)kpzp0 with x, y, z ∈ O∩O×

(p)

co-prime, u ∈ E , k ∈ Z>0. Suppose we have a solution, then
(i) ξ := x+ζy

1−ζ and ξ are in Sel(K,µp) and they are in O ∩O×
(p).

(ii) x+y
1−ζ = u′(1− ζ)(k−1)pγp with u′ ∈ E and γ ∈ O ∩O×

(p).

(iii) ξ, ξ and x+y
1−ζ are coprime.

Proposition 5.3. ξ and ξ are in the same class of Sel(K,µp).
14



Once they are in the same class, we can write ξ = vαp and ξ = vβp for some v ∈ E and
α, β ∈ O ∩ O×

(p). We have αp + (−β)p = v−1u′(1 + ζ)(1− ζ)(k−1)pγp. By descent, we prove the

theorem.

Proof of proposition. As p is regular, ξ, ξ represented by element in E .

Lemma 5.4 (Kummer’s lemma). If p is regular, then x ∈ E/Ep is trivial if and only if x
congruent to an integer modulo p in O.

The Kummer lemma is equivalent to the map α is injective. As ξ and ξ are p-adic units,
α(ξ), α(ξ) equivalent to the image of ξ, ξ as element in Ev under the map

Ev/E
p
v ≃ µp−1 × (1 + πOv)/µp−1 × (1 + πOv)

p ↠ 1 + πOv/1 + pOv ≃ 1 + πO/1 + pO.

As p| x+y
1−ζ± , we have α(ξ) = α(ξ), thus they are in the same class in Sel(K,µp). □

Algebraic proof of Kummer’s lemma. Sufficient to prove if u ∈ E is congruent to an integer
modulo p, then K(u1/p) is unramified. Let v be a finite place of K. If v does not divides
p, then Disc(u1/p, , ζu1/p · · · , ζp−1u1/p) ∈ DK(u1/p)/K is a v-adic unit. When v divides p, As

u congruent to a nonzero integer modulo p, replace u by up−1 may assume u ≡ 1 (mod p).
Consider the norm of u, we must have u ≡ 1 mod πp, where π = 1 − ζ. Now Consider the
polynomial π−p((πx − 1)p + u) ∈ O[x], its discriminant is a p-adic unit. Thus K(u1/p) is
unramified everywhere. □

□

6. Exercises and Projects

6.1. Exercises.

Exercise 1. Let ∆ be a finite abelian group, p be a prime such that p ∤ #∆. Let L be a finite
extension of Qp which contains all the values of all the characters od ∆. Let M be a finite Zp[∆]-
module, for any character χ : ∆ → O×

L , define Mχ := {a ∈ M ⊗ OL | aσ = χ(σ)a for all σ ∈ ∆} and
Mχ := (M ⊗OL)/⟨aσ − χ(σ)a | a ∈ M ⊗OL, σ ∈ ∆⟩.

(i) Prove that the natural map Mχ → Mχ is an isomorphism.
(ii) Let M and N be finite Zp[∆]-modules. Prove that the followings are equivalent:

(a) M and N have the same Jordan-Hölder series;
(b) #Mχ = #Nχ for all character χ : ∆ → O×

L .

Exercise 2. Let K be a number field, α ∈ K×, n ≥ 1 be an integer, L = K( n
√
α). Let p ∤ n be a prime

ideal of OK . Prove that L/K is unramified at p if and only if n | ordp(α).

Exercise 3. Let K be a totally real field which is Galois over Q. Let G = Gal(K/Q). Prove that there
is a unit u ∈ O×

K such that Z[G]u is finite index in O×
K . Show that O×

K ⊗Q ∼= Q[G]/NG as Q[G]-modules
in particular. (Hint: read the proof of Drichlet’s unit theorem.)

Exercise 4. Let G be a finite abelian group. Let p be a prime number such that p ∤ |G|. For a character

χ : G → Qp
×
, let Zp[χ] denote the ring generated by the values of χ over Zp. Then Zp[χ] is a Zp[G]

module by g(a) = χ(g)a.

(1) Prove that Zp[χ] ∼= Zp[χ
σ] as Zp[G]-modules. Here σ ∈ Gal(Qp/Qp) and χσ = σ ◦ χ is also a

character of G (we call such two characters are Gal(Qp/Qp) conjugate).
(2) Prove that

Zp[G] ∼=
∏
χ/∼

Zp[χ],

where χ1 ∼ χ2 means they are Gal(Qp/Qp) conjugate. Prove that for any Zp[G]-module M ,

M ∼=
∏
χ/∼

M ⊗Zp[G] Zp[χ].

(3) Let M and N be two finite generated free Zp-modules with an action of G. Prove that if
M ⊗Zp Qp

∼= N ⊗Zp Qp as Qp[G]-modules, then M ∼= N as Zp[G]-modules.

6.2. Projects. ??? Read Euler system argument ???
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Appendix A. Thaine’s Theorem (Work in progress)

Recall that K+ = Q(ζp+ζ−1
p ), ∆+ = Gal(K+/Q), q is a prime not dividing p(p−1)

2 , and R+ = Zq[∆
+].

Recall that E := O×
K , E+ := O×

K+ , C :=
⟨

ζb
p−1

ζp−1 | b ∈ (Z/pZ)×
⟩
· µ(K) ⊂ E , and C+ := C ∩ E+. Let

n ≥ 1 be a sufficiently large integer such that qn annihilates (E+/C+) ⊗Z Zq and Cl(K+) ⊗Z Zq. Then

(E+/C+) ⊗Z Zq = (E+/C+) ⊗Z (Z/qnZ) = E+/(E+)q
nC+ and Cl(K+) ⊗Z Zq = Cl(K+) ⊗Z (Z/qnZ) =

Cl(K+)/Cl(K+)q
n

. Let ℓ be a prime ≡ 1 (mod pn). Then ℓ splits completely in K+. Let l be a prime of
K+ above ℓ.

Let L = Q(ζℓ), then K+ and L are linearly disjoint over Q. Let M = K+L:

L M
(Z/ℓZ)×

||
|| ∆+

AA
AA

l Q(ζp + ζ−1
p ) = K+

∆+
BBB

B
L = Q(ζℓ)

(Z/ℓZ)×��
��

(ζℓ − 1)

ℓ Q ℓ

Since ℓ is unramified in K+ and is totally ramified in L, the l is totally ramified in M . Let L be the
unique prime ideal of M over l, then lOM = Lℓ−1. The (ζℓ − 1)OL is the unique prime ideal of L above
ℓ, and ℓOL = (ζℓ − 1)ℓ−1OL. Any prime of K+ above ℓ is of form lσ for a unique σ ∈ ∆+, and we have

ℓOK+ =
∏

σ∈∆+ lσ. Similarly, any prime of M above ℓ is of form Lσ for a unique σ ∈ Gal(M/L)
∼−→

Gal(K+/Q) = ∆+, and we have (ζℓ − 1)OM =
∏

σ∈Gal(M/L) L
σ as well as ℓOM =

∏
σ∈Gal(M/L)(L

σ)ℓ−1.

Lemma A.1. Let δ ∈ C+ be an element. Then there exists an element ε ∈ O×
M such that NM/K+(ε) = 1

and ε ≡ δ (modLσ) for all σ ∈ ∆+ (or equivalently, ε ≡ δ (mod ζℓ − 1)).

Proof. To be added □
Fix a generator s of (Z/ℓZ)× which gives a generator τ of Gal(M/K+) by ζℓ 7→ ζsℓ . The τ 7→ ε

extends to a cocycle Gal(M/K+) → M× by the condition NM/K+(ε) = 1. Hence by Hilbert’s Theorem

90, H1(M/K+,M×) = 0, the above cocycle is a coboundary, which means that there exists α ∈ M×

such that ατ/α = ε.
To be added. . .
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