ALGEBRAIC NUMBER THEORY-SUMMER SCHOOL NOTES

YE TIAN

CONTENTS

1. Ideal Class Groups	1
1.1. Ideal class groups and unit groups	1
1.2. Variation	2
1.3. Class Number Formula	2
1.4. Chebotarev density theorem	2
1.5. Class field theory	3
1.6. The class number formula for cyclotomic fields	3
1.7. A refinement of class number formula for cyclotomic fields	3
2. Stickelberger's Theorem	4
3. Thaine's Theorem	5
4. Catalan Equation	8
4.1. Selmer group and Mihailescu element	10
4.2. Stickelberger's theorem and $[(x - \zeta)^{-}]$	10
4.3. Rigidity of $[x - \zeta]^+$	12
4.4. Thaine's theorem and $[x - \zeta]^+$	13
4.5. Proof of the main theorem	14
5. Femart Equation	14
6. Exercises and Projects	15
6.1. Exercises	15
6.2. Projects	15
Appendix A. Thaine's Theorem (Work in progress)	16
References	16

1. Ideal Class Groups

1.1. Ideal class groups and unit groups. Let K be a number field. Denote Cl(K) be its ideal class group and \mathcal{O}_K^{\times} be its group of units.

Theorem 1.1. We have

- (1) $\operatorname{Cl}(K)$ is a finite abelian group. (2) $\mathcal{O}_K^{\times} \cong \mathbb{Z}^{r_1+r_2-1} \times \mu(K)$, where r_1 , r_2 are the number of real and complex places of K, $\mu(K)$ is the set of roots of unity in K, which is a finite cyclic group.

Summary. (1) Note that for any $M \geq 1$, there exist only finite many integral ideals of \mathcal{O}_K with norm bounded by M. Thus enough to show exists M_K such that for any fractional ideal \mathfrak{a} , exists $\alpha \in \mathfrak{a}$ such that $N(\alpha \mathfrak{a}^{-1}) < M_K$. A fractional ideal \mathfrak{a} can be viewed as a lattice in $\mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \simeq \mathbb{R}^n$ here $n = [K : \mathbb{Q}]$. Consider the following centrally symmetric convex connected region

$$U_t = \Big\{ (x, y) \in \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} | \sum_{i=1}^{r_1} |x_i| + \sum_{j=1}^{r_2} 2|y_j| \le t \Big\},\$$

then exists C_K such that for any \mathfrak{a} , if $t \geq C_K \mathcal{N}(\mathfrak{a})^{1/n}$ holds (equivalently, exists N_K such that for any \mathfrak{a} , if $\operatorname{Vol}(U_t) \geq N_K \operatorname{N}(\mathfrak{a})$ holds), then exists $0 \neq \alpha \in \mathfrak{a} \cap U_t$. We thus have

$$\mathcal{N}(\alpha) \le \left(\frac{C_K \mathcal{N}(\mathfrak{a})^{1/n}}{n}\right)^n.$$

(2) Consider the log map:

$$\ell: \mathcal{O}_K^{\times} \to \mathbb{R}^{r_1 + r_2}, \quad u \mapsto (\log |\sigma(u)|_{\sigma_i})_{\sigma_i},$$

here σ_i runs over all infinite places and $|\cdot|_{\sigma}$ is the normalized valuation. Then ker $\ell = \mu(K)$ and the image lies in the hyperplane $\mathbb{R}^{\Sigma=0}$. The image in discrete in $\mathbb{R}^{\Sigma=0}$, thus enough to show that $\operatorname{Im} \ell$ is a (full) lattice of $\mathbb{R}^{\Sigma=0}$.

Fact 1.2. Let $n = r_1 + r_2$ and $A \in M_{n \times n}(\mathbb{R})$ such that every row lies in $\mathbb{R}^{\Sigma=0}$. If $a_{ii} > 0$ for all i and $a_{i,j} < 0$ for all $i \neq j$, then rank A = n - 1.

By the above fact enough to find for each infinite place σ_i an element $u_i \in \mathcal{O}_K^{\times}$ such that $|\sigma_j(u)| < 1$ for all $j \neq i$. Thus enough to show exists C_K large enough such that exists a sequence $\{a_n\}_n$ in \mathcal{O}_K with norm bounded by C_K such that $\{|\sigma_j(a_n)|\}_n$ is strictly decreasing for any $j \neq i$. If this is down, choose m > n such that $(a_m) = (a_n)$. Then a_m/a_n is what needed. We now show the existence of the sequence: Consider the following certrally symmetric convex connected region in $\mathbb{R}^{r_1+r_2}$:

$$V_{c,t} := \left\{ x \in \mathbb{R}^{r_1 + r_2} | |x_i|_{\sigma_i} < c_i \text{ and } \prod_i c_i = t \right\}.$$

Then exists N_k such that for any $t \ge N_K$ and any $c = (c_1, \dots, c_{r_1+r_2})$ with $\prod_i c_i = t$, exists $0 \ne \alpha \in V_{c,t} \cap \mathcal{O}_K$. By induction we can find the needed sequence.

1.2. Variation.

1.2.1. Variation of ideal class group. Recall a modulus \mathfrak{m} of K is a formal product $\mathfrak{m}_f \cdot \mathfrak{m}_\infty$ of an integral ideal \mathfrak{m}_f and a subset \mathfrak{m}_∞ of real places of K. The ray class group modulo \mathfrak{m} is defined by $\operatorname{Cl}(K)_{\mathfrak{m}} := I^{\mathfrak{m}_f}/P_{\mathfrak{m},1}$, here $I^{\mathfrak{m}_f}$ is the group of prime to \mathfrak{m}_f fractional ideals and $P_{\mathfrak{m},1}$ is the subgroup of principal ideals which represented by elements $\alpha \in K^{\times}$ with $\alpha \equiv 1 \pmod{\mathfrak{m}_f}$ and $\sigma(\alpha) \geq 0$ for all $\sigma \in \mathfrak{m}_\infty$. If $\mathfrak{m} = 1$, we get the ideal class group. Denote $K_{\mathfrak{m}}$ the subgroup of K which is units at \mathfrak{m}_f and $K_{\mathfrak{m},1}$ the subgroup of $K_{\mathfrak{m}}$ that congruent to 1 modulo \mathfrak{m}_f . Then we have the following exact sequence

$$0 \to \mathcal{O}_K^{\times} \cap K_{\mathfrak{m}}/\mathcal{O}_K^{\times} \cap K_{\mathfrak{m},1} \to K_{\mathfrak{m}}/K_{\mathfrak{m},1} \to \mathrm{Cl}(K)_{\mathfrak{m}} \to \mathrm{Cl}(K) \to 1.$$

In particular, $\#Cl(K)_{\mathfrak{m}}$ is finite. We also have a canonical isomorphism

$$K_{\mathfrak{m}}/K_{\mathfrak{m},1} \simeq \prod_{\sigma \in \mathfrak{m}_{\infty}} \{\pm 1\} \times (\mathcal{O}_K/\mathfrak{m}_f)^{\times}.$$

1.2.2. Variation of units. Let S be a finite set of finite places of K, the group of S-units $\mathcal{O}_{K,S}$ of K is the subgroup of K^{\times} consists of elements which are units outside S. Then we have the following exact sequence

$$1 \to \mathcal{O}_K^{\times} \to \mathcal{O}_{K,S}^{\times} \xrightarrow{(\operatorname{ord}_v(\cdot))_{v \in S}} \mathbb{Z}^S$$

and the cokernel of the last map is finite. Thus $\mathcal{O}_{K,S} \simeq \mathcal{O}_K^{\times} \oplus \mathbb{Z}^{\#S} \simeq \mathbb{Z}^{r_1+r_2+\#S-1}$.

1.3. Class Number Formula.

Theorem 1.3. Let K be a number field. Then we have the class number formula

$$\operatorname{Res}_{s=1} \zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} \# \operatorname{Cl}(K) \operatorname{Reg}(\mathcal{O}_K^{\times})}{w_K \sqrt{|D_K|}}$$

1.4. Chebotarev density theorem. Let L/K be a finite Galois extension of number fields. Let \mathfrak{p} be a prime of K unramified in L and let \mathfrak{P} be a prime of L above \mathfrak{p} . Define the Frobenius $\operatorname{Frob}_{\mathfrak{P}}(L/K)$ to be the element in $\operatorname{Gal}(L/K)$ such that $\operatorname{Frob}_{\mathfrak{P}}(L/K)$ stabilizes \mathfrak{P} and is $x \mapsto x^{\#(\mathcal{O}_K/\mathfrak{p})}$ on $\mathcal{O}_L/\mathfrak{P}$. For $\sigma \in \operatorname{Gal}(L/K)$, we have $\operatorname{Frob}_{\mathfrak{P}^{\sigma}}(L/K) = \sigma \operatorname{Frob}_{\mathfrak{P}}(L/K)\sigma^{-1}$, therefore, we can define $\operatorname{Frob}_{\mathfrak{p}}(L/K) :=$ [Frob $\mathfrak{P}(L/K)$] to be the conjugacy class of $\operatorname{Frob}_{\mathfrak{P}}(L/K)$ in $\operatorname{Gal}(L/K)$ for any \mathfrak{P} above \mathfrak{p} . In particular, if L/K is abelian, then $\operatorname{Frob}_{\mathfrak{p}}(L/K)$ is indeed an element of $\operatorname{Gal}(L/K)$.

Theorem 1.4 (Chebotarev density theorem). Let $\sigma \in \text{Gal}(L/K)$ be any fixed element. Then among all the primes of K unramified in L, the primes \mathfrak{p} which satisfy $\text{Frob}_{\mathfrak{p}}(L/K) = [\sigma]$ have density $\#[\sigma]/[L:K]$.

In particular, there exists infinitely many prime \mathfrak{p} of \mathcal{O}_K such that $\operatorname{Frob}_{\mathfrak{p}}(L/K) = [\sigma]$, as well as infinitely many prime \mathfrak{P} of \mathcal{O}_L such that $\operatorname{Frob}_{\mathfrak{P}}(L/K) = \sigma$.

1.5. Class field theory.

Theorem 1.5. Let K be a number field. Let H_K be the maximal abelian extension over K unramified everywhere. Then there is a natural isomorphism (which is $Gal(K/K_0)$ -equivariant if K_0 is any subfield of K such that K/K_0 is Galois):

$$\operatorname{Cl}(K) \xrightarrow{\sim} \operatorname{Gal}(H_K/K), \qquad [\mathfrak{p}] \mapsto \operatorname{Frob}_{\mathfrak{p}}(H_K/K).$$

Corollary 1.6. For any $\mathcal{C} \in Cl(K)$, the density of prime ideals \mathfrak{p} such that $\mathfrak{p} \in \mathcal{C}$ is 1/#Cl(K).

1.6. The class number formula for cyclotomic fields. If K is abelian over \mathbb{Q} , we have $\zeta_K(s) = \prod_{\chi} L(s,\chi)$, here χ runs over all primitive characters associated to characters of $\operatorname{Gal}(K/\mathbb{Q})$. Thus

$$\frac{2^{r_1}(2\pi)^{r_2} \#\operatorname{Cl}(K)\operatorname{Reg}(\mathcal{O}_K^{\times})}{w_K \sqrt{|D_K|}} = \prod_{\chi \neq 1} L(s,\chi).$$

Now let K be the cyclotomic field $\mathbb{Q}(\zeta_p)$, p be an odd prime. Denote c the complex conjugation in $\operatorname{Gal}(K/\mathbb{Q})$ and $K^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$ be the fixed field of c, then the natural norm map $1 + c : \operatorname{Cl}(K) \to \operatorname{Cl}(K^+)$ is surjective. Define the minus part $\operatorname{Cl}(K)^-$ to be the kernel of this map.

If $\chi : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ is a non-trivial Dirichlet character, we have the special value formula of the Dirichlet *L*-function [7]

$$L(1,\chi) = \begin{cases} -\frac{G(\chi,\zeta_p)}{p} \sum_{\substack{a \in (\mathbb{Z}/p\mathbb{Z})^{\times} \\ \pi i \frac{G(\chi,\zeta_p)}{p} B_{1,\overline{\chi}}, \end{cases}} \overline{\chi}(a) \log|1-\zeta_p^a|, & \text{if } \chi \text{ is even and non-trivial,} \end{cases}$$

Here $G(\chi, \zeta_p) := \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \chi(a) \zeta_p^a$ is the Gauss sum. Therefore we have

Proposition 1.7. [7]

$$#Cl(K^{+}) = \frac{1}{2^{(p-3)/2}R(\mathcal{O}_{K^{+}}^{\times})} \prod_{\chi \neq 1 \text{ even } a \mod p} -\chi(a) \log|1 - \zeta_{p}^{a}|,$$
$$#Cl(K)^{-} = 2p \prod_{\chi \text{ odd}} -\frac{1}{2}B_{1,\chi}.$$

Denote \mathcal{E} (resp. \mathcal{E}^+) the group of units of K (resp. K^+). Let \mathcal{C} be the subgroup of \mathcal{E} generated by $\frac{\zeta_p^{b-1}}{\zeta_n-1}$, (b,p) = 1 and roots of unity. Let $\mathcal{C}^+ = \mathcal{C} \cap K^+$.

Proposition 1.8. [7] We have

$$#\mathrm{Cl}(K^+) = #(\mathcal{E}/\mathcal{C}) = #(\mathcal{E}^+/\mathcal{C}^+)$$

Let $\Delta = \operatorname{Gal}(K/\mathbb{Q})$ and $R = \mathbb{Z}[\Delta]$. For $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ let $\sigma_a \in \Delta$ be the element given by $\zeta_p \mapsto \zeta_p^a$. The following element

$$\theta := \frac{1}{p} \sum_{a=1}^{p-1} a \sigma_a^{-1} \in \mathbb{Q}[\Delta],$$

is called the *Stickelberger element*. The Stickelberger ideal is defined by $S = R \cap R\theta$.

Proposition 1.9. [7] We have

$$\#\mathrm{Cl}(K)^{-} = \#(R^{-}/S^{-})$$

1.7. A refinement of class number formula for cyclotomic fields. Let K be the cyclotomic field $\mathbb{Q}(\zeta_p)$ where p is an odd prime and $K^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$ be the maximal real subfield of K.

Theorem 1.10. Let q be a prime such that $q \nmid p(p-1)$. Let L be a finite extension of \mathbb{Q}_q and χ : $\operatorname{Gal}(K/\mathbb{Q}) \to \mathcal{O}_L^{\times}$ be an odd character. Then

$$# \left(\operatorname{Cl}(K) \otimes_{\mathbb{Z}} \mathcal{O}_L \right)_{\chi} = |B_{1,\overline{\chi}}|_q^{-[L:\mathbb{Q}_q]}.$$

Equivalently, $\operatorname{Cl}(K)^- \otimes \mathbb{Z}_q$ and $(R^-/S^-) \otimes \mathbb{Z}_q$ have the same Jordan-Hölder series as $\mathbb{Z}_q[\Delta]$ -modules, which is a refinement of the minus class number formula (Prop. 1.9).

Theorem 1.11. Let q be a prime such that $q \nmid \frac{p(p-1)}{2}$. Let L be a finite extension of \mathbb{Q}_q and $\chi : \operatorname{Gal}(K^+/\mathbb{Q}) \to \mathcal{O}_L^{\times}$ be a character. Then

$$\# \left(\operatorname{Cl}(K^+) \otimes_{\mathbb{Z}} \mathcal{O}_L \right)_{\chi} = \# \left((\mathcal{E}^+ / \mathcal{C}^+) \otimes_{\mathbb{Z}} \mathcal{O}_L \right)_{\chi}.$$

Equivalently, $\operatorname{Cl}(K^+) \otimes \mathbb{Z}_q$ and $(\mathcal{E}^+/\mathcal{C}^+) \otimes \mathbb{Z}_q$ have the same Jordan-Hölder series as $\mathbb{Z}_q[\Delta^+]$ -modules, here $\Delta^+ = \operatorname{Gal}(K^+/\mathbb{Q})$. This is a refinement of the plus class number formula (Prop. 1.8).

Note that R^-/S^- and $\mathcal{E}^+/\mathcal{C}^+$ are cyclic (?????) hence we obtain the following two results as corollaries:

Proposition 1.12. Let q be a prime such that $q \nmid p(p-1)$. Then $S \otimes_{\mathbb{Z}} \mathbb{Z}_q$ annihilates $Cl(K) \otimes_{\mathbb{Z}} \mathbb{Z}_q$.

Theorem 1.13 (Thaine's Theorem). Let q be a prime such that $q \nmid \frac{p(p-1)}{2}$. Let $R^+ = \mathbb{Z}_q[\Delta^+]$. Then

$$2 \cdot \operatorname{Ann}_{R^+} \left((\mathcal{E}^+ / \mathcal{C}^+) \otimes_{\mathbb{Z}} \mathbb{Z}_q \right) \subseteq \operatorname{Ann}_{R^+} \left(\operatorname{Cl}(K^+) \otimes_{\mathbb{Z}} \mathbb{Z}_q \right).$$

In fact, we have the Stickelberger's Theorem which is slightly stronger than Proposition 1.12:

Theorem 1.14 (Stickelberger's Theorem). The Stickelberger ideal S annihilates Cl(K).

We present a proof of Stickelberger's Theorem in \S^2 , and a proof of the following weak version of Thaine's Theorem in \S^3 , without using the refinement of class number formula.

Theorem 1.15. Let q be a prime such that $q \nmid p(p-1)$. Let $R^+ = \mathbb{F}_q[\Delta^+]$. Then

 $\operatorname{Ann}_{R^+}\left((\mathcal{E}^+/\mathcal{C}^+)\otimes_{\mathbb{Z}}\mathbb{F}_q\right)\subseteq\operatorname{Ann}_{R^+}\left(\operatorname{Cl}(K^+)\otimes_{\mathbb{Z}}\mathbb{F}_q\right).$

2. Stickelberger's Theorem

Recall that $K = \mathbb{Q}(\zeta_p)$, $\Delta = \operatorname{Gal}(K/\mathbb{Q})$ and $R = \mathbb{Z}[\Delta]$. We are going to prove the Stickelberger's Theorem (Thm. 1.14), namely, the Stickelberger ideal $S := R \cap R\theta$ annihilates $\operatorname{Cl}(K)$.

Lemma 2.1. Let $\mathfrak{C} \in Cl(K)$ be an ideal class. Then there exists infinitely many prime $\ell \equiv 1 \pmod{p}$ such that there exists a prime \mathfrak{l} of K above ℓ satisfying $\mathfrak{l} \in \mathfrak{C}$.

Proof. Consider the Hilbert class field H_K of K. Then H_K/\mathbb{Q} is Galois. Consider the element $\sigma_{\mathfrak{C}} \in \operatorname{Gal}(H_K/K) \subset \operatorname{Gal}(H_K/\mathbb{Q})$ corresponding to \mathfrak{C} . By Chebotarev density theorem, there exists infinitely many prime \mathfrak{L} of H_K such that $\operatorname{Frob}_{\mathfrak{L}}(H_K/\mathbb{Q}) = \sigma_{\mathfrak{C}}$. Take $\ell = \mathfrak{L} \cap \mathbb{Z}$ and $\mathfrak{l} = \mathfrak{L} \cap \mathcal{O}_K$ then they satisfy the desired condition.

Therefore we only need to prove that for any such \mathfrak{l} and any $\beta \in R$ such that $\beta \theta \in R$, $\mathfrak{l}^{\beta \theta}$ is principal. Let $L = \mathbb{Q}(\zeta_{\ell})$, then K and L are linearly disjoint over \mathbb{Q} . Let M = KL:

Since ℓ is unramified in K and is totally ramified in L, the \mathfrak{l} is totally ramified in M. Let \mathfrak{L} be the unique prime ideal of M over \mathfrak{l} , then $\mathfrak{l}\mathcal{O}_M = \mathfrak{L}^{\ell-1}$. The $(\zeta_\ell - 1)\mathcal{O}_L$ is the unique prime ideal of L above ℓ , and $\ell\mathcal{O}_L = (\zeta_\ell - 1)^{\ell-1}\mathcal{O}_L$. Any prime of K above ℓ is of form \mathfrak{l}^{σ} for a unique $\sigma \in \Delta$, and we have $\ell\mathcal{O}_K = \prod_{\sigma \in \Delta} \mathfrak{l}^{\sigma}$. Similarly, any prime of M above ℓ is of form \mathfrak{L}^{σ} for a unique $\sigma \in \operatorname{Gal}(M/L) \xrightarrow{\sim} \operatorname{Gal}(K/\mathbb{Q}) = \Delta$, and we have $(\zeta_\ell - 1)\mathcal{O}_M = \prod_{\sigma \in \operatorname{Gal}(M/L)} \mathfrak{L}^{\sigma}$ as well as $\ell\mathcal{O}_M = \prod_{\sigma \in \operatorname{Gal}(M/L)} \mathfrak{L}^{\sigma}$.

Let s be a generator of $(\mathbb{Z}/\ell\mathbb{Z})^{\times}$ and define a surjective group homomorphism $\chi : (\mathbb{Z}/\ell\mathbb{Z})^{\times} \to \mu_p$ by $s \mapsto \zeta_p$. Consider the Gauss sum $G(\chi, \zeta_\ell) \in \mathcal{O}_M$. We have $G(\chi, \zeta_\ell) \cdot \overline{G(\chi, \zeta_\ell)} = \ell$, therefore we may write

$$G(\chi,\zeta_{\ell})\mathcal{O}_{M} = \prod_{\sigma\in\mathrm{Gal}(M/L)} (\mathfrak{L}^{\sigma})^{r(\sigma)},$$

where for each σ , $r(\sigma)$ is an integer satisfying $0 \le r(\sigma) \le \ell - 1$. If $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, denote by $r(a) := r(\sigma_a^{-1})$. **Lemma 2.2.** There exists an element $c \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ such that for any $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ we have $r(a) = (\ell - 1)\left\{\frac{ac}{p}\right\}$, here $\left\{\frac{ac}{p}\right\}$ is the fractional part of $\frac{ac}{p}$. In particular, we have $0 < r(a) < \ell - 1$.

Proof. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ be an element and denote $\sigma := \sigma_a^{-1}$. Consider the quantity $G(\chi, \zeta_\ell)/(\zeta_\ell - 1)^{r(a)} \in \mathcal{C}$ M, then by definition it is a \mathfrak{L}^{σ} -unit. Since any prime above ℓ is totally ramified over M/K, for any $\tau \in \operatorname{Gal}(M/K)$, any $\sigma \in \operatorname{Gal}(M/L)$ and any $x \in \mathcal{O}_M$, we have $x^{\tau} \equiv x \pmod{\mathfrak{L}^{\sigma}}$. Now we take τ to be $\zeta_{\ell} \mapsto \zeta_{\ell}^{s}$, then we have

$$0 \neq \frac{G(\chi, \zeta_{\ell})}{(\zeta_{\ell} - 1)^{r(a)}} \equiv \left(\frac{G(\chi, \zeta_{\ell})}{(\zeta_{\ell} - 1)^{r(a)}}\right)^{\tau} \pmod{\mathfrak{L}^{\sigma}}.$$

On the other hand, we have $G(\chi,\zeta_\ell)^{\tau} = \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \chi(a) \zeta_\ell^{sa} = \chi(s^{-1}) \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \chi(a) \zeta_\ell^a = \zeta_p^{-1} G(\chi,\zeta_\ell)$ as well as $(\zeta_{\ell} - 1)^{\tau} = \zeta_{\ell}^{s} - 1 = (\zeta_{\ell} - 1)(\zeta_{\ell}^{s-1} + \dots + \zeta_{\ell} + 1)$, hence

$$\left(\frac{G(\chi,\zeta_{\ell})}{(\zeta_{\ell}-1)^{r(a)}}\right)^{\tau} = \frac{\zeta_{p}^{-1}}{(\zeta_{\ell}^{s-1}+\dots+\zeta_{\ell}+1)^{r(a)}} \cdot \frac{G(\chi,\zeta_{\ell})}{(\zeta_{\ell}-1)^{r(a)}} \equiv \frac{\zeta_{p}^{-1}}{s^{r(a)}} \cdot \frac{G(\chi,\zeta_{\ell})}{(\zeta_{\ell}-1)^{r(a)}} \pmod{\mathfrak{L}^{\sigma}},$$

therefore $s^{r(a)} \equiv \zeta_p^{-1} \pmod{\mathfrak{L}^{\sigma}}$, taking σ^{-1} and note that both side are in \mathcal{O}_K , we obtain $s^{r(a)} \equiv s^{r(a)}$ $(\zeta_p^{-1})^{\sigma^{-1}} = \zeta_p^{-a} \pmod{\mathfrak{l}}$. Note that $\mathcal{O}_K/\mathfrak{l} \cong \mathbb{Z}/\ell\mathbb{Z}$ and that ℓ is unramified in K, we have $\zeta_p^{-1} \in (\mathcal{O}_K/\mathfrak{l})^{\times}$ is of exact order p, hence there exists $c \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ (of course independent of a) such that $\zeta_p^{-1} \equiv$ $s^{c \cdot (\ell-1)/p} \pmod{\mathfrak{l}}$. Therefore $s^{r(a)} \equiv s^{ac \cdot (\ell-1)/p} \pmod{\mathfrak{l}}$, which means $r(a) \equiv ac \cdot (\ell-1)/p \pmod{\ell-1}$, combined with $0 \le r(a) \le \ell - 1$ we obtain the desired result. \square

In the above proof we actually shows that for any $\tau \in \operatorname{Gal}(M/K), \ G(\chi, \zeta_{\ell})^{\tau}/G(\chi, \zeta_{\ell}) \in \mu_{p} \subset \mathcal{O}_{K}.$ Therefore $G(\chi,\zeta_{\ell})^{\ell-1} \in \mathcal{O}_K$. Note that for any $\sigma \in \operatorname{Gal}(M/L)$, we have $\mathfrak{l}^{\sigma}\mathcal{O}_M = (\mathfrak{L}^{\sigma})^{\ell-1}$, hence

$$G(\chi,\zeta_{\ell})^{\ell-1}\mathcal{O}_{K} = \prod_{\sigma \in \operatorname{Gal}(M/L)} (\mathfrak{l}^{\sigma})^{r(\sigma)} = \left(\sum_{a=1}^{p-1} r(a)\sigma_{a}^{-1}\right)\mathfrak{l} = \left((\ell-1)\sigma_{c}\theta\right)\mathfrak{l}$$

is a principal ideal; here we note that $\sum_{a=1}^{p-1} r(a)\sigma_a^{-1} = \sum_{a=1}^{p-1} (\ell-1) \left\{ \frac{ac}{p} \right\} \sigma_a^{-1} = (\ell-1)\sigma_c \theta$. Let $\gamma := (\sigma_c^{-1}\beta)G(\chi,\zeta_\ell) \in M$, then $\gamma^{\ell-1} = (\sigma_c^{-1}\beta)G(\chi,\zeta_\ell)^{\ell-1} \in K$ and $\gamma^{\ell-1}\mathcal{O}_K = ((\ell-1)\beta\theta)\mathfrak{l}$ is the $(\ell-1)$ -th power of the fractional ideal $(\beta\theta)\mathfrak{l}$ of K. Hence the extension $K(\gamma)/K$ is unramified outside $\ell - 1$ (exercise 2). However, $K(\gamma) \subset M$ and M/K is is totaly ramified at ℓ , so we must have $K(\gamma) = K$, $\gamma \in K$ and $\gamma \mathcal{O}_K = (\beta \theta) \mathfrak{l}$ is principal. This completes the proof of Stickelberger's Theorem.

3. THAINE'S THEOREM

In this section we prove Theorem 1.15.

Recall that $K^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1}), \Delta^+ = \operatorname{Gal}(K^+/\mathbb{Q}), q \text{ is a prime not dividing } p(p-1), \text{ and } R^+ = \mathbb{F}_q[\Delta^+].$ Recall that $\mathcal{E} := \mathcal{O}_K^{\times}, \ \mathcal{E}^+ := \mathcal{O}_{K^+}^{\times}, \ \mathcal{C} := \left\langle \frac{\zeta_p^{b-1}}{\zeta_p - 1} \mid b \in (\mathbb{Z}/p\mathbb{Z})^{\times} \right\rangle \cdot \mu(K) \subset \mathcal{E}, \ \text{and} \ \mathcal{C}^+ := \mathcal{C} \cap \mathcal{E}^+.$ Obviously we have $(\mathcal{E}^+/\mathcal{C}^+) \otimes \mathbb{F}_q = \mathcal{E}^+/(\mathcal{E}^+)^q \mathcal{C}^+$. Note that $\frac{\zeta_p^{-b}-1}{\zeta_p-1} = -\zeta_p^{-b} \frac{\zeta_p^{b}-1}{\zeta_p-1}$, so we also have $\mathcal{C} = \left\langle \frac{\zeta_p^b - 1}{\zeta_p - 1} \mid 2 \le b \le \frac{p - 1}{2} \right\rangle \cdot \mu(K).$

Fact 3.1. The $\mathcal{E}^+ \otimes \mathbb{F}_q$ is a cyclic $\mathbb{F}_q[\Delta^+]$ -module.

Lemma 3.2. Let $\mathfrak{C} \in \operatorname{Cl}(K^+) \otimes \mathbb{F}_q$ be a class. Then there exists infinity many prime $\ell \equiv 1 \pmod{pq}$ such that there exists a prime \mathfrak{l} of K^+ above ℓ satisfying $\mathfrak{l} \in \mathfrak{C}$ and such that the natural map

(3.1)
$$\mathcal{E}^+ \otimes \mathbb{F}_q \to (\mathcal{O}_{K^+}/\ell \mathcal{O}_{K^+})^{\times} \otimes \mathbb{F}_q \cong \prod_{\sigma \in \Delta^+} (\mathcal{O}_{K^+}/\mathfrak{l}^{\sigma})^{\times} \otimes \mathbb{F}_q \cong \prod_{\sigma \in \Delta^+} (\mathbb{Z}/\ell \mathbb{Z})^{\times} \otimes \mathbb{F}_q$$

is injective.

Proof. Let H be the maximal unramified abelian extension of K^+ such that $\operatorname{Gal}(H/K^+)$ is killed by q. Then $\operatorname{Gal}(H/K^+) \cong \operatorname{Cl}(K^+) \otimes \mathbb{F}_q$ and H/\mathbb{Q} is Galois. Consider the following field extension diagram:

Here by Kummer theory, we have the isomorphism of $\operatorname{Gal}(K^+(\zeta_q)/\mathbb{Q})$ -modules

$$\operatorname{Gal}(K^+(\zeta_q, \sqrt[q]{\mathcal{E}^+})/K^+(\zeta_q)) \xrightarrow{\sim} \operatorname{Hom}(\mathcal{E}^+ \otimes \mathbb{F}_q, \mu_q),$$
$$\sigma \mapsto \left(u \mapsto \frac{(\sqrt[q]{u})^{\sigma}}{\sqrt[q]{u}}\right).$$

We note that the K, H and $K^+(\zeta_q, \sqrt[q]{\mathcal{E}^+})$ are pairwise linearly disjoint over K^+ :

- the K and $H(\zeta_q, \sqrt[q]{\mathcal{E}^+})$ are linearly disjoint over K^+ since p is totally ramified over K/K^+ and is unramified over $H(\zeta_q, \sqrt[q]{\mathcal{E}^+})/K^+$;
- the *H* and $K^+(\zeta_q)$ are linearly disjoint over K^+ since *q* is unramified over H/K^+ and is totally ramified over $K^+(\zeta_q)/K^+$;
- the $H(\zeta_q)$ and $K^+(\zeta_q, \sqrt[q]{\mathcal{E}^+})$ are linearly disjoint over $K^+(\zeta_q)$, since $\operatorname{Gal}(K^+(\zeta_q)/K^+)$ acts on $\operatorname{Gal}(H(\zeta_q)/K^+(\zeta_q))$ by trivial character, and acts on $\operatorname{Gal}(K^+(\zeta_q, \sqrt[q]{\mathcal{E}^+})/K^+(\zeta_q)) \cong \operatorname{Hom}(\mathcal{E}^+ \otimes \mathbb{F}_q, \mu_q)$ by mod q cyclotomic character.

Hence we have $\operatorname{Gal}(KH(\zeta_q, \sqrt[q]{\mathcal{E}^+})/K^+) \cong \operatorname{Gal}(K/K^+) \times \operatorname{Gal}(H/K^+) \times \operatorname{Gal}(K^+(\zeta_q, \sqrt[q]{\mathcal{E}^+})/K^+)$, and $KH(\zeta_q, \sqrt[q]{\mathcal{E}^+})/\mathbb{Q}$ is Galois.

Since $\mathcal{E}^+ \otimes \mathbb{F}_q$ is a cyclic $\mathbb{F}_q[\Delta^+]$ -module, the $\operatorname{Gal}(K^+(\zeta_q, \sqrt[q]{\mathcal{E}^+})/K^+(\zeta_q)) \cong \operatorname{Hom}(\mathcal{E}^+ \otimes \mathbb{F}_q, \mu_q)$ is also a cyclic $\mathbb{F}_q[\Delta^+]$ -module. Let τ be a generator of it. Let $\sigma_{\mathfrak{C}} \in \operatorname{Gal}(H/K^+)$ be the element corresponding to \mathfrak{C} . Then by Chebotarev density theorem, there exists infinitely many prime \mathfrak{L} of $KH(\zeta_q, \sqrt[q]{\mathcal{E}^+})$ such that $\operatorname{Frob}_{\mathfrak{L}}(KH(\zeta_q, \sqrt[q]{\mathcal{E}^+})/\mathbb{Q})$ is equal to

$$(1, \sigma_{\mathfrak{C}}, \tau) \in \operatorname{Gal}(K/K^{+}) \times \operatorname{Gal}(H/K^{+}) \times \operatorname{Gal}(K^{+}(\zeta_{q}, \sqrt[q]{\mathcal{E}^{+}})/K^{+}(\zeta_{q}))$$
$$\subset \operatorname{Gal}(K/K^{+}) \times \operatorname{Gal}(H/K^{+}) \times \operatorname{Gal}(K^{+}(\zeta_{q}, \sqrt[q]{\mathcal{E}^{+}})/K^{+})$$
$$= \operatorname{Gal}(KH(\zeta_{q}, \sqrt[q]{\mathcal{E}^{+}})/K^{+}) \subset \operatorname{Gal}(KH(\zeta_{q}, \sqrt[q]{\mathcal{E}^{+}})/\mathbb{Q}).$$

Take $\ell = \mathfrak{L} \cap \mathbb{Z}$ and $\mathfrak{l} = \mathfrak{L} \cap \mathcal{O}_{K^+}$, we claim that they satisfy the desired condition. In fact we only need to check that the map (3.1) is injective. Suppose $u \in \mathcal{E}^+$ is in the kernel of (3.1), then we have $(u \mod \mathfrak{l}^{\sigma}) \in ((\mathcal{O}_{K^+}^{\times}/\mathfrak{l}^{\sigma})^{\times})^q \cong (\mathbb{F}_{\ell}^{\times})^q$ for any $\sigma \in \Delta^+$, i.e. $u^{(\ell-1)/q} \equiv 1 \pmod{\mathfrak{l}^{\sigma}}$ for any $\sigma \in \Delta^+$. Since the τ is equal to the restriction of $\operatorname{Frob}_{\mathfrak{L}}$ to $K^+(\zeta_q, \sqrt[q]{\mathcal{E}^+})$, we have $(\sqrt[q]{u})^{\tau} \equiv (\sqrt[q]{u})^{\ell} \pmod{\mathfrak{L}}$, therefore $(\sqrt[q]{u})^{\tau}/\sqrt[q]{u} \equiv (\sqrt[q]{u})^{\ell-1} = u^{(\ell-1)/q} \equiv 1 \pmod{\mathfrak{L}}$. On the other hand, $(\sqrt[q]{u})^{\tau}/\sqrt[q]{u} \in \mu_q \subset \mathbb{F}_{\ell}^{\times}$, hence we must have $(\sqrt[q]{u})^{\tau} = \sqrt[q]{u}$ and $\sqrt[q]{u} \in K^+(\zeta_q)$ since τ is a generator. This implies that $u \in (K^{\times})^q$ (let σ_a be a generator of $\operatorname{Gal}(K^+(\zeta_q)/K^+) \cong \mathbb{F}_q^{\times}$, then $1 \neq a \in \mathbb{F}_q^{\times}$ hence $1 - a \in \mathbb{F}_q^{\times}$; we have $(\sqrt[q]{u})^{\sigma_a} = \zeta \cdot \sqrt[q]{u}$ for some $\zeta \in \mu_q$, let $b = (1-a)^{-1} \in \mathbb{F}_q^{\times}$ then it's easy to see that $\zeta^b \cdot \sqrt[q]{u}$ is fixed by σ_a), hence $u \in (\mathcal{E}^+)^q$. \Box

Therefore we only need to prove that for any such \mathfrak{l} , if $\beta \in \operatorname{Ann}_{R^+}((\mathcal{E}^+/\mathcal{C}^+) \otimes_{\mathbb{Z}} \mathbb{F}_q)$, i.e. if $u^{\beta} \in (\mathcal{E}^+)^q \mathcal{C}^+$ for all $u \in \mathcal{E}^+$, then $\mathfrak{l}^{\beta} \in \operatorname{Cl}(K^+)^q$.

Let $L = \mathbb{Q}(\zeta_{\ell})$, then K^+ and L are linearly disjoint over \mathbb{Q} . Let $M^+ = K^+L$:

Since ℓ is unramified in K^+ and is totally ramified in L, the \mathfrak{l} is totally ramified in M^+ . Let \mathfrak{L} be the unique prime ideal of M^+ over \mathfrak{l} , then $\mathfrak{l}\mathcal{O}_{M^+} = \mathfrak{L}^{\ell-1}$. The $(\zeta_\ell - 1)\mathcal{O}_L$ is the unique prime ideal of L above ℓ , and $\ell\mathcal{O}_L = (\zeta_\ell - 1)^{\ell-1}\mathcal{O}_L$. Any prime of K^+ above ℓ is of form \mathfrak{l}^{σ} for a unique $\sigma \in \Delta^+$, and we have $\ell\mathcal{O}_{K^+} = \prod_{\sigma \in \Delta^+} \mathfrak{l}^{\sigma}$. Similarly, any prime of M^+ above ℓ is of form \mathfrak{L}^{σ} for a unique $\sigma \in \mathfrak{Gal}(M^+/L) \xrightarrow{\sim} \mathrm{Gal}(K^+/\mathbb{Q}) = \Delta^+$, and we have $(\zeta_\ell - 1)\mathcal{O}_{M^+} = \prod_{\sigma \in \mathrm{Gal}(M^+/L)} \mathfrak{L}^{\sigma}$ as well as $\ell\mathcal{O}_{M^+} = \prod_{\sigma \in \mathrm{Gal}(M^+/L)} (\mathfrak{L}^{\sigma})^{\ell-1}$.

Note that $\prod_{\sigma \in \Delta^+} (\mathbb{Z}/\ell\mathbb{Z})^{\times} \otimes \mathbb{F}_q$ is (non-canonically) isomorphic to $\mathbb{F}_q[\Delta^+]$ as a $\mathbb{F}_q[\Delta^+]$ -module, given by $(s^{n(\sigma)})_{\sigma \in \Delta^+} \mapsto \sum_{\sigma \in \Delta^+} n(\sigma)\sigma$, where *s* is a fixed generator of $(\mathbb{Z}/\ell\mathbb{Z})^{\times}$. We can conclude that under this isomorphism and (3.1), $\mathcal{E}^+ \otimes \mathbb{F}_q$ is isomorphic to $\mathbb{F}_q[\Delta^+]^{\operatorname{sum}=0}$ as a $\mathbb{F}_q[\Delta^+]$ -module, where $\operatorname{sum} : \mathbb{F}_q[\Delta^+] \to \mathbb{F}_q, \sum_{\sigma \in \Delta^+} n(\sigma)\sigma \mapsto \sum_{\sigma \in \Delta^+} n(\sigma)$. This is by counting dimension and note that for any $u \in \mathcal{E}^+$ we have $[u] = [u^{q+1}] \in \mathcal{E}^+/(\mathcal{E}^+)^q$ and $N_{K^+/\mathbb{Q}}(u^{q+1}) = 1$, it's easy to see that the image of u^{q+1} in $\mathbb{F}_q[\Delta^+]$ is contained in $\mathbb{F}_q[\Delta^+]^{\operatorname{sum}=0}$.

Lemma 3.3. Let $\delta \in (\mathcal{C}^+)^2$ be an element. Then there exists an element $\varepsilon \in \mathcal{O}_{M^+}^{\times}$ such that $N_{M^+/K^+}(\varepsilon) = 1$ and $\varepsilon \equiv \delta \pmod{\mathfrak{L}^{\sigma}}$ for all $\sigma \in \operatorname{Gal}(M^+/L)$ (or equivalently, $\varepsilon \equiv \delta \pmod{\zeta_{\ell} - 1}$).

Proof. Let c be the unique non-trivial element of $\operatorname{Gal}(M/M^+)$, which is also the unique non-trivial element of $\operatorname{Gal}(K/K^+)$, here the field M = KL is defined in §2. First we claim that $(\mathcal{C}^+)^2 = \operatorname{N}_{K/K^+}(\mathcal{C})$: in fact, for $b \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ we have $\left(\frac{\zeta_p^{b-1}}{\zeta_p^{-1}}\right)^c = \frac{\zeta_p^{-b}-1}{\zeta_p^{-1}-1} = \zeta_p^{1-b} \frac{\zeta_p^{b-1}}{\zeta_p^{-1}}$, therefore

$$N_{K/K^{+}}(\mathcal{C}) = \left\{ \prod_{b=2}^{(p-1)/2} (\zeta_{p}^{1-b})^{m(b)} \prod_{b=2}^{(p-1)/2} \left(\frac{\zeta_{p}^{b} - 1}{\zeta_{p} - 1} \right)^{2m(b)} \middle| m(b) \in \mathbb{Z} \right\},\$$

as well as

$$\mathcal{C}^{+} = \left\{ \gamma \prod_{b=2}^{(p-1)/2} \left(\frac{\zeta_{p}^{b} - 1}{\zeta_{p} - 1} \right)^{m(b)} \middle| \begin{array}{c} m(b) \in \mathbb{Z}, \ \gamma \in \mu(K) = \mu_{2p} \text{ such that} \\ \gamma^{2} = \prod_{b=2}^{(p-1)/2} (\zeta_{p}^{1-b})^{m(b)} \in \mu_{p} \end{array} \right\},$$

here we note that once m(b) is given, there are always two γ satisfy the condition.

Therefore if $\delta \in (\mathcal{C}^+)^2 = \mathcal{N}_{K/K^+}(\mathcal{C})$, we may write

$$\delta = \mathcal{N}_{K/K^+} \left(\prod_{b \in (\mathbb{Z}/p\mathbb{Z})^{\times}} (\zeta_p^b - 1)^{m(b)} \right) = \prod_{b \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \left((\zeta_p^b - 1)(\zeta_p^{-b} - 1) \right)^{m(b)}$$

where m(b) satisfies $\sum_{b \in (\mathbb{Z}/p\mathbb{Z})^{\times}} m(b) = 0$. We take ε to be

$$\varepsilon := \mathcal{N}_{M/M^+} \left(\prod_{b \in (\mathbb{Z}/p\mathbb{Z})^{\times}} (\zeta_p^b - \zeta_\ell)^{m(b)} \right) = \prod_{b \in (\mathbb{Z}/p\mathbb{Z})^{\times}} \left((\zeta_p^b - \zeta_\ell) (\zeta_p^{-b} - \zeta_\ell) \right)^{m(b)},$$

then it is easy to check that ε satisfies all the desired properties.

Now let $u_0 \in \mathcal{E}^+$ be an element which maps to a generator of $\mathcal{E}^+ \otimes \mathbb{F}_q$ as a $\mathbb{F}_q[\Delta^+]$ -module (note that $\mathcal{E}^+ \otimes \mathbb{F}_q \cong \mathbb{F}_q[\Delta^+]^{\mathrm{sum}=0} \xrightarrow{\sim} \mathbb{F}_q[\Delta^+] / \sum_{\sigma \in \Delta^+} \sigma$ which is a cyclic $\mathbb{F}_q[\Delta^+]$ -module), and let $u = u_0^{q+1} \in \mathcal{E}^+$, then obviously u and u_0 map to the same element of $\mathcal{E}^+ \otimes \mathbb{F}_q$ (by abuse of notation, we denote its image in $\mathbb{F}_q[\Delta^+]$ by u). Since $u_0^\beta \in (\mathcal{E}^+)^q \mathcal{C}^+$, we may write $u_0^\beta = v_0^q \delta_0$ for some $v_0 \in \mathcal{E}^+$ and $\delta_0 \in \mathcal{C}^+$, and write $u^\beta = v^q \delta$ with $v = v_0^{q+1} \in \mathcal{E}^+$ and $\delta = \delta_0^{q+1} \in (\mathcal{C}^+)^{q+1} \subset (\mathcal{C}^+)^2$ since q is odd. Let ε be the element corresponding to δ in the above lemma.

The generator s of $(\mathbb{Z}/\ell\mathbb{Z})^{\times}$ gives a generator τ of $\operatorname{Gal}(M^+/K^+)$ by $\zeta_{\ell} \mapsto \zeta_{\ell}^s$. The $\tau \mapsto \varepsilon$ extends to a cocycle $\operatorname{Gal}(M^+/K^+) \to (M^+)^{\times}$ by the condition $\operatorname{N}_{M^+/K^+}(\varepsilon) = 1$. Hence by Hilbert's Theorem 90,

 $H^1(M^+/K^+, (M^+)^{\times}) = 0$, the above cocycle is a coboundary, which means that there exists $\alpha \in (M^+)^{\times}$ such that $\alpha^{\tau}/\alpha = \varepsilon$.

The fractional ideal $\alpha \mathcal{O}_{M^+}$ is stable by $\operatorname{Gal}(M^+/K^+)$ -action, hence by considering prime ideal decomposition, $\alpha \mathcal{O}_{M^+} = (\mathfrak{a} \mathcal{O}_{M^+})\mathfrak{b}$ for some fractional ideal \mathfrak{a} of K^+ whose prime ideal decomposition only contains unramified primes over M^+/K^+ , and b is a fractional ideal of M^+ whose prime ideal decomposition only contains ramified primes over M^+/K^+ , namely, $\{\mathfrak{L}^\sigma\}_{\sigma\in\mathrm{Gal}(M^+/L)}$. This means that

(3.2)
$$\alpha \mathcal{O}_{M^+} = (\mathfrak{a} \mathcal{O}_{M^+}) \prod_{\sigma \in \operatorname{Gal}(M^+/L)} (\mathfrak{L}^{\sigma})^{r(\sigma)}$$

where for each σ , $r(\sigma)$ is an integer.

Similar to the proof of Lemma 2.2, for any $\sigma \in \text{Gal}(M^+/L)$, the $\alpha/(\zeta_{\ell}-1)^{r(\sigma)} \in M^+$ is a \mathfrak{L}^{σ} -unit, and

$$0 \neq \frac{\alpha}{(\zeta_{\ell} - 1)^{r(\sigma)}} \equiv \left(\frac{\alpha}{(\zeta_{\ell} - 1)^{r(\sigma)}}\right)^{\tau} = \frac{\varepsilon \alpha}{(\zeta_{\ell}^{s} - 1)^{r(\sigma)}} \equiv \frac{\varepsilon}{s^{r(\sigma)}} \cdot \frac{\alpha}{(\zeta_{\ell} - 1)^{r(\sigma)}} \pmod{\mathfrak{L}^{\sigma}},$$

therefore $s^{r(\sigma)} \equiv \varepsilon \equiv \delta \pmod{\mathfrak{L}^{\sigma}}$ for any σ . Note that $s^{r(\sigma)}$ and δ are in \mathcal{O}_{K^+} , we obtain $s^{r(\sigma)} \equiv \varepsilon$ $\delta \pmod{\mathfrak{l}^{\sigma}}$ for any σ , hence the image of $\delta \pmod{\mathfrak{l}^{\beta}}$ under the map

$$\mathcal{E}^+ \otimes \mathbb{F}_q \hookrightarrow (\mathcal{O}_{K^+}/\ell \mathcal{O}_{K^+})^{\times} \otimes \mathbb{F}_q \cong \mathbb{F}_q[\Delta^+]$$

is $\sum_{\sigma \in \Delta^+} r(\sigma)\sigma$. Since $\mathbb{F}_q[\Delta^+] = \mathbb{F}_q[\Delta^+]^{\operatorname{sum}=0} \oplus \mathbb{F}_q \cdot \sum_{\sigma \in \Delta^+} \sigma = \mathbb{F}_q[\Delta^+] \cdot u \oplus \mathbb{F}_q \cdot \sum_{\sigma \in \Delta^+} \sigma$, this implies that $\beta \in R^+$ can be written as $\beta = \beta_1 \sum_{\sigma \in \Delta^+} r(\sigma)\sigma + \beta_2 \sum_{\sigma \in \Delta^+} \sigma$ for some $\beta_1 \in \mathbb{F}_q[\Delta^+]$ and $\beta_2 \in \mathbb{F}_q$. The N_{M^+/K^+} of (3.2) reads

$$N_{M^+/K^+}(\alpha)\mathcal{O}_{K^+} = \mathfrak{a}^{\ell-1}\prod_{\sigma\in\Delta^+} (\mathfrak{l}^{\sigma})^{r(\sigma)} = \mathfrak{a}^{\ell-1} \cdot \left(\sum_{\sigma\in\Delta^+} r(\sigma)\sigma\right)\mathfrak{l}$$

which is a principal ideal, hence $\left(\sum_{\sigma \in \Delta^+} r(\sigma)\sigma\right) \mathfrak{l} \in \operatorname{Cl}(K^+)^q$. On the other hand $\left(\sum_{\sigma \in \Delta^+} \sigma\right) \mathfrak{l} = \prod_{\sigma \in \Delta^+} \mathfrak{l}^{\sigma} = \ell \mathcal{O}_{K^+}$ is principal, so $\mathfrak{l}^{\beta} \in \operatorname{Cl}(K^+)^q$. This completes the proof of Theorem 1.15.

4. CATALAN EQUATION

Theorem 4.1 (Catalan Conjecture). Let $p, q \ge 2$ be two integers, then the equation

$$x^p - y^q = 1$$

has no solutions (x, y) in positive integers other that (x, y, p, q) = (3, 2, 2, 3).

The cases of q = 2 and p = 2 are proved by Lebesgue and Chao Ko, respectively. Then to prove the conjecture, it reduces to the following

Main Theorem [Mihailescu]. Let $p \neq q$ be two odd primes. Then the equation

$$\begin{cases} x^p - y^q = 1, \\ x, y \in \mathbb{Z} \setminus \{0\} \end{cases}$$

has no solutions. (We call the above Diophantine equation (*) the Catalan equation.)

We give some elementary remarks. First, $x^p - y^q = 1$ is equivalent to $(-y)^q - (-x)^p = 1$. **Lemma 4.2.** For any integer $x \neq 1$,

$$\left(x-1, \ \frac{x^p-1}{x-1}\right) = 1 \ or \ p.$$

Moreover, p|x-1 if and only if $p\Big|\frac{x^p-1}{x-1}$, and in this case $p^2 \nmid \frac{x^p-1}{x-1}$.

Proof. Note that $\frac{(z+1)^p-1}{z} - p \equiv 0 \mod z$ for any integer $z \neq 0$.

Lemma 4.3. If (x, y) is a solution to the Catalan equation. Then

$$\left(x-1, \frac{x^p-1}{x-1}\right) = p \iff p|y, \qquad \left(y+1, \frac{y^q+1}{y+1}\right) = q \iff q|x.$$

Lemma 4.4. Assume that q|x, then

- (i) $y \equiv -1 \pmod{q^{p-1}}$ and $|y| \ge q^{p-1} 1$.
- (ii) Moreover, if (p, q-1) = 1, then $|x| \ge q^{p-1} + q$.

Proof. By Lemma 4.3, we may write

$$y + 1 = q^{p-1}a^p, \qquad \frac{y^q + 1}{y+1} = qb^p; \qquad x = qab.$$

Thus (i) follows and moreover, we have

$$q^{p-1} | (y+1) | \frac{y^q+1}{y+1} - q = q(b^p-1),$$

and therefore $b^p \equiv 1 \mod q^{p-2}$. Note that $(\mathbb{Z}/q^{p-2}\mathbb{Z})^{\times} \cong \mathbb{F}_q^{\times} \times \mathbb{Z}/q^{p-3}\mathbb{Z}$, and by assumption (p, q(q-1)) = 1, we have that $b \equiv 1 \mod q^{p-2}$. It is easy to see that b > 1, thus

$$|x| \ge qb \ge q(q^{p-2}+1) = q^{p-1}+q.$$

Proposition 4.5 (Cassels). Assume that (x, y) is a solution to the Catalan equation. Then we have

- (1) q|x and p|y;
- (2) $x \equiv 1 \pmod{p^{q-1}}$ and $y \equiv -1 \pmod{q^{p-1}}$; (3) $|x| \ge \max(p^{q-1}(q-1)^q 1, q^{p-1} + q)$ and $|y| \ge \max(q^{p-1}(p-1)^p 1, p^{q-1} + p)$.

Proof. It is easy to see that parts (2) and (3) follow from (1) by Lemma 4.4. Assume that $q \nmid x$. Then $\left(y+1,\frac{y^{q}+1}{y+1}\right)=1$ and $y+1=b^{p}$ for some integer $b\neq 0,1$. Thus $x^{p}-(b^{p}-1)^{q}=1$. Consider the increasing function $f(x) = x^p - (b^p - 1)^q$ with $b \neq 0, 1$ constant and x variable. It is easy to see that $f(b^q) > 1$ and if p > q, then

$$\begin{cases} (b^{q}-1)^{1/q} < (b^{p}-1)^{1/p}, & \text{if } b > 1; \\ (1+(-b)^{q})^{1/q} > (1+(-b)^{p})^{1/p}, & \text{if } b < 0, \end{cases}$$

and therefore $f(b^q - 1) < 0$. Thus we have shown that if p > q then q|x, and by symmetric if q > p then p|y.

We now assume p > q and want to show that p|y. Suppose that $p \nmid y$, then $x - 1 = a^q$ for some integer $a \neq 0$, and therefore $y = a^p F(a^{-q})$, where F is the function

$$F(t) = ((1+t)^p - t^p)^{1/q}.$$

An observation is that the Taylor series around t = 0 of F(t) and that of $(1 + t)^{p/q}$ have the same terms of degree i < p (which is $\binom{p/q}{i}t^i$), since near t = 0 we have that

$$F(t) = \sum_{i=0}^{\infty} \binom{1/q}{i} ((1+t)^p - t^p - 1)^i, \qquad (1+t)^{p/q} = \sum_{i=0}^{\infty} \binom{1/q}{i} ((1+t)^p - 1)^i.$$

Now for integer k, p/q < k < p, consider the q-integer

$$\beta = \beta_k := a^{qk} \left(F(t) - F_k(t) \right) \Big|_{t=a^{-q}} \in \mathbb{Z}[q^{-1}], \qquad F_k(t) = \sum_{i=0}^k \binom{p/q}{i} t^i$$

whose q-adic valuation is $\operatorname{ord}_q \binom{p/q}{k} = -k - \operatorname{ord}_q k!$. Thus we have a lower bound of $|\beta|$:

$$|\beta| \ge q^{\operatorname{ord}_q \beta} = q^{-k - \operatorname{ord}_q k!}.$$

On the other hand, since q|x and (p, q-1) = 1, by Lemma 4.4, $|a^q + 1| = |x| \ge q^{p-1} + q$. This produces a contradictory upper bound of $|\beta|$ by applying the below lemma to $t = a^{-q}$ and k = [p/q] + 1:

$$|\beta| \le \frac{|a|^q}{(|a|^q - 1)^2} \le \frac{1}{|a|^q - 2} \le q^{1-p} < q^{-k - \operatorname{ord}_q k!}.$$

Lemma 4.6. For k = [p/q] + 1, we have

$$|F(t) - F_k(t)| \le \frac{|t|^{k+1}}{(1-|t|)^2}, \qquad \forall t \in \mathbb{R}, |t| < 1.$$

Proof of Lemma 4.6. For |t| < 1, we have

$$F(t) - F_k(t) \le |F(t) - (1+t)^{p/q}| + |(1+t)^{p/q} - F_k(t)|.$$

Now the first term can be estimated by the mean value theorem for the function $x \mapsto x^{1/q}$:

 $|F(t) - (1+t)^{p/q}| \le q^{-1}|t|^p |t'|^{q^{-1}-1} \le q^{-1}|t|^p (1-|t|)^{p(q^{-1}-1)} \le q^{-1}|t|^p (1-|t|)^{-2}.$

Here $t' \in \mathbb{R}$ is between $(1+t)^p$ and $(1+t)^p - t^p$ so that $|t'| \ge (1-|t|)^p$. To estimate the second term, by the remainder term of Taylor series expansion of $G(t) := (1+t)^{p/q}$ (note that $G_k = F_k$ for k < p), we have

$$\left| (1+t)^{p/q} - F_k(t) \right| = \left| \frac{t^{k+1}}{(k+1)!} G^{k+1}(t') \right| \le \left| \binom{p/q}{k+1} \right| |t|^{k+1} (1-|t|)^{-k-1+p/q} \le \frac{1}{k+1} |t|^{k+1} (1-|t|)^{-2}.$$

Here $t' \in \mathbb{R}$ is between 0 and t so that $|1 + t'| \leq 1 - |t|$.

Now combining two terms and noting that $p > k + 1, k, q \ge 2$, we have

$$|F(t) - F_k(t)| \le \left(\frac{|t|^p}{q} + \frac{|t|^{k+1}}{k+1}\right) (1 - |t|)^{-2} \le |t|^{k+1} (1 - |t|)^{-2}.$$

4.1. Selmer group and Mihailescu element. Let $K = \mathbb{Q}(\mu_p)$ and $\Delta = \text{Gal}(K/\mathbb{Q})$. Denote I_K the group of fractional ideals of K. Consider the selmer group

$$\operatorname{Sel}(K,\mu_q) := \ker \left(K^{\times} / K^{\times,q} \to I_K / q I_K, \quad [\xi] \mapsto (\xi) \right)$$

Let E be the group of global units of K and Cl(K) the ideal class group of K. We have a exact sequence of $\mathbb{F}_q[\Delta]$ -modules:

$$0 \to E/E^q \to \operatorname{Sel}(K, \mu_q) \to \operatorname{Cl}(K)[q] \to 0$$

Here the first map is embedding and the second is given by $[\xi] \mapsto (\xi)^{1/q}$.

Proposition 4.7. Let (x, y) be a solution of Catalan's equation in $\mathbb{Z}^2_{\neq 0}$, then:

$$\xi := \left[\frac{x-\zeta}{1-\zeta}\right] \in \operatorname{Sel}(K,\mu_q),$$

here ζ is a fixed primitive p-th root of unity.

Remark 4.8. For any
$$\theta \in \mathbb{F}_q[\Delta]^{\deg=0}$$
, $\left[\frac{x-\zeta}{1-\zeta}\right]^{\theta} = [(x-\zeta)^{\theta}] \in \operatorname{Sel}(K,\mu_q)$. In particular, $\left[\frac{x-\zeta}{1-\zeta}\right]^- = [(x-\zeta)^-] \in \operatorname{Sel}(K,\mu_q)^-$.

4.2. Stickelberger's theorem and $[(x - \zeta)^{-}]$. The Stickelberger element in $\mathbb{Q}[\Delta]$ is defined by $\Theta = \sum_{i=1}^{p-1} \left\{ \frac{i}{p} \right\} \sigma_i^{-1}$. The Stickelberger ideal is defined by $I = \mathbb{Z}[\Delta] \cap \Theta \mathbb{Z}[|\Delta]$.

Remark 4.9.

- (1) The Stickelberger ideal is generated by $\theta_a = (a \sigma_a)\Theta = \sum_{i=1}^{p-1} \left[\frac{ai}{p}\right]\sigma_i^{-1}$ for (a, p) = 1.
- (2) $(1-\tau)I$ is generated by $(1-\iota)(\theta_{a+1}-\theta_a)$, for $1 \le a \le (p-1)/2$.

Theorem 4.10 (Stickelberger). [6] $I \subset \operatorname{Ann}_{\mathbb{Z}[\Delta]}(\operatorname{Cl}(K))$. In particular, $(I \otimes \mathbb{F}_q)^- \subset \operatorname{Ann}_{\mathbb{F}_q[\Delta]}\operatorname{Sel}(K, \mu_q)^-$.

Theorem 4.11. [8][A] Suppose $(x, y) \in \mathbb{Z}^2_{\neq 0}$ is a solution of Catalan's equation, then

- (0) $p|h_q^-$ and $q|h_p^-$. In particular, $p, q \ge 41$.
- (1) $q^2 | \hat{x} \text{ and } p^2 | \hat{y}.$
- (2) (q, p-1) = 1 and (p, q-1) = 1.

Remark 4.12. Idea of the proof:

- (0) The element $[(x \zeta)^{-}]$ is nontrivial in $\operatorname{Sel}(K, \mu_q)^{-} \simeq \operatorname{Cl}(K)[q]^{-}$.
- (1) Using Stickelberger element, we can show that $\operatorname{Ann}_{\mathbb{F}_q[\Delta]}([(x-\zeta)^{-}]) \neq 0$. And we thus have $(1-\zeta x)^{\theta} = b^q$ for some $\theta \in (1-\tau)\mathbb{Z}[\Delta]$ (For example, $\theta = (1-\tau)\theta_2$.) such that $q \nmid \theta$ and $b \in K^{\times}$. As q|x, we know that $(1-\zeta x)^{\theta} = b^q \equiv 1 \pmod{q}$. Thus $(1-\zeta x)^{\theta} \equiv 1 \pmod{q^2}$, thus $q^2|x$.

(2) To show (p, q-1) = 1, reduce to show $q < 4p^2$. Note that for $\theta \in I(1-\tau)$, let $\alpha_{\theta} \in K^{\times}$ be such that $(x - \zeta)^{\theta} = \alpha_{\theta}^{q}$, then α_{θ} is very close to some ζ_{q} under a fixed embedding $K \to \mathbb{C}$. When $q \ge 4p^2$, We will find a θ such that α_{θ} and $\overline{\alpha_{\theta}}$ are very close to 1 and $||\theta||$ is very small such that the upper bound of $N(\alpha_{\theta}-1)$ will small than the lower bound of $N(\alpha_{\theta}-1) \ge (1+|x|)^{-||\theta||(p-1)/2q}$.

Proof.

(0)

Fact 4.13. Let $\alpha, \beta \in \mathcal{O}_K$ such that $\alpha - \beta \in \mathcal{O}_K^{\times}$ and $\alpha/\beta \in K^{\times,q}$, then we can produce a unit $\gamma := (\alpha^{1/q} - \beta^{1/q})^q \in \mathcal{O}_K^{\times}$,

where $\alpha^{1/q}, \beta^{1/q}$ are chosen such that $(\alpha^{1/q})^q = \alpha$, $(\beta^{1/q})^q = \beta$ and $\alpha^{1/q}/\beta^{1/q} \in K$.

If $\left[\frac{x-\zeta}{x-\zeta}\right] \in \operatorname{Sel}(K,\mu_q)$ is trival, then $\frac{x-\zeta}{z-\zeta} \in K^{\times,q}$. Let $\alpha = \frac{x-\zeta}{1-\zeta}$ and $\beta = \frac{x-\overline{\zeta}}{1-\zeta}$, then $\alpha, \beta \in \mathcal{O}_K$ and $\alpha - \beta = \frac{\overline{\zeta}-\zeta}{1-\zeta} \in \mathcal{O}_K^{\times}$. Then we have a unit $\gamma \in \mathcal{O}_K^{\times}$ as in the above fact. As K has no real embedding, $N(\gamma) = 1$. Note that γ does not depend on the choice of $\alpha^{1/q}$ and $\beta^{1/q}$, because $\zeta_q \notin K$. Let π be the unique prime ideal of K above p. We will study π -adic properties of the equation $N(\gamma) = 1$.

Write $\alpha = 1 + \mu$ here $\mu = \frac{x-1}{1-\zeta}$ with $p^{q-1}\pi^{-1}|\mu$. And we have $\beta = -\overline{\zeta}(1+\overline{\mu})$ with $p^{q-1}\pi^{-1}|\overline{\mu}$. We may choose

$$w := (1+\mu)^{1/q} := \sum_{i=0}^{\infty} \binom{1/q}{i} \mu^i \in \overline{K} \cap K_{\pi}, \quad \text{and } w' := (-\overline{\zeta}(1+\overline{\mu}))^{1/q} := -\zeta^{-1/q} \sum_{i=0}^{\infty} \binom{1/q}{i} \overline{\mu}^i \in \overline{K} \cap K_{\pi}.$$

We have $w/w' \in K$ follows from $w \equiv 1 \pmod{\pi}$, $w' \equiv -1 \pmod{\pi}$ and the following fact:

Fact 4.14. Let $\delta \in K$ be the unique element such that $\delta^q = \frac{x-\zeta}{x-\zeta}$, then $\delta \equiv -1 \pmod{\pi}$.

Proof. This is because $1 \equiv \delta \overline{\delta} \equiv \delta^2 \pmod{\pi}$ and $\delta^q \equiv -1 \pmod{\pi}$.

 $N(w-w')^q \equiv 1 \pmod{\mu^2}$ implies $w-w' \equiv 1+\overline{\zeta} \pmod{\mu^2}$: By computation we have:

$$N(w - w')^q \equiv 1 + \frac{(x - 1)(1 - q)}{2q} \pmod{\pi(x - 1)}$$

Thus p|1-q and

$$w - w' \equiv (1 + \mu/q) + \zeta^{-1/q} (1 + \overline{\mu}/q) \equiv 1 + \overline{\zeta} \pmod{\mu^2}.$$

By the above analysis, we may consider expansion of $N(w-w')^q$ modulo μ^3 . It turns out that

$$N(w - w')^{q} \equiv 1 + \frac{(1 - q)(x - 1)^{2}}{2q} \frac{1 - p^{2}}{12} \pmod{\mu^{3}}$$

thus $p^{q-1} | \frac{\pi^3(q-1)}{3}$, contradiction.

(2) We first reduce to show $q < 4p^2$: Write $y + 1 = q^{p-1}a^p$, then $1 \equiv q^{p-1}a^p \equiv a^p \pmod{p}$ and hence $a^p \equiv 1 \pmod{p^2}$. As $p^2|y$, we have $q^{p-1} \equiv 1 \pmod{p^2}$. If p|q-1 then $q^p \equiv 1 \pmod{p^2}$, thus $p^2|q-1$. Fix an embedding $K \to \mathbb{C}$. Suppose that $q \ge 4p^2$, by the following lemma and the facts $|x| > q^{p-1}$ and q > 5 we get the contradiction.

Lemma 4.15. If $q \ge 4p^2$, then there exists $\theta \in I^-$ with $||\theta|| \le \frac{3q}{p-1}$ such that $N(\alpha_{\theta} - 1) \le \frac{2^{p-1}}{(|x|+1)^2}$, here $\alpha_{\theta} \in K^{\times}$ is such that $(x - \zeta)^{\theta} = \alpha_{\theta}^{q}$.

Proof. • We have an injective homomorphism:

$$(1-\tau)\operatorname{Ann}_{\mathbb{Z}[\Delta]}([(x-\zeta)^{-}]) \to \{\alpha \in K^{\times} | \exists \zeta_{q} \in \mu_{q} \text{ such that } |\phi(\alpha) - \zeta_{q}| \leq \frac{||\theta||}{q(|x|-1)}\}$$
$$\theta \mapsto \alpha_{\theta} \text{ (such that } (x-\zeta)^{\theta} = \alpha_{\theta}^{q}).$$

- Existence of ζ_q : Exists ζ_q such that $q \arg(\alpha_{\theta} \zeta_q^{-1}) = \arg(\alpha_{\theta}^q)$. Note that $|\alpha_{\theta}| = 1$, thus

$$|\alpha - \zeta_q| < |\arg(\alpha_{\theta}\zeta_q^{-1})| \le 1/q |\log(1 - \zeta/x)^{\theta}| \le \frac{||\theta||}{q(|x| - 1)}$$

Here the last inequality follows from for |z| < 1, $|\log(1 + z)| \le \frac{|z|}{1-|z|}$, here the log is the principle branch of the logarithm.

- Injectivity:(i) $\frac{x-\sigma(\zeta)}{1-\zeta}$ are co-prime to each other; (ii) The lower bound of |x| implies $\frac{x-\sigma(\zeta)}{1-\zeta}$ is not unit.
- If $p, q \ge 5$ and $q \ge 4p^2$, then exists at least q + 1 element in $I^- \subset (\operatorname{Ann}_{\mathbb{Z}[\Delta]}[(x \zeta)^-])$ with size $||\theta|| \le \frac{3}{2} \frac{q}{p-1}$.

Thus by box principle, exists θ', θ'' such that corresponding to same ζ_q , thus can get upper bound of $|\alpha_{\theta'-\theta''}-1|$: $|\alpha_{\theta'-\theta''}-1| \leq |\alpha_{\theta'}-\zeta_q| + |\alpha_{\theta''}-\zeta_q| \leq \frac{3}{(p-1)(|x|-1)}$. Thus

$$N(\alpha_{\theta'-\theta}) \le \frac{2^{p-1}}{(|x|+1))^2}.$$

- Consider the stickelberger element $\theta_a = \sum_{i=1}^{p-1} \left[\frac{ai}{p}\right] \sigma_i^{-1}$, $1 \le i \le (p-1)/2$. Then $e_i :=$

 $(1-\tau)(\theta_{i+1}-\theta_i)$ is a Z-basis of I^- and has the property that half of coefficients equals to 1 and half of coefficients equals to -1. By using this fact, under the restriction $q \ge 4p^2$, exists at least q+1 element in I^- with $||\cdot|| \le \frac{3q}{p-1}$.

Remark 4.16. Let *E* be the group of global units of *K*, *C* the subgroup of *E* generated by cyclic units i.e. the subgroup generated by roots of unity and $\frac{\zeta^{\frac{a}{2}} - \zeta^{-\frac{a}{2}}}{\zeta^{\frac{1}{2}} - \zeta^{-\frac{1}{2}}}$, $a = 2, \dots, (p-1)/2$. Let C_q the subgroup of *C* generated by root of unity and elements which congruent to 1 modulo q^2 .

- (2) (q, p 1) = 1 implies that $R = \mathbb{F}_q[\Delta]$ is a semisimple algebra. Note that E/E^q is a cyclic R-module. Consider the filtration of E/E^q ,

$$C_q E^q / E^q \subset C E^q / E^q \subset E / C E^q \subset E E^q,$$

we have

$$\operatorname{Ann}_{R}(C_{q}E^{q}/E^{q}) \cdot \operatorname{Ann}_{R}(CE^{q}/E^{q}) \cdot \operatorname{Ann}_{R}(E/C\mathcal{E}^{q}) = \operatorname{Ann}_{R}(E/E^{q}) = NR$$

4.3. Rigidity of $[x - \zeta]^+$. Let (x, y) be a solution to the Catalan equation and $\zeta \in \mu_p$ be a primitive *p*-th root of unity (will viewed as an element in \mathbb{C}). The algebraic number

$$x - \zeta \in K := \mathbb{Q}(\mu_p) \subset \mathbb{C}$$

will play a key role in the story. The following rigidity property of $x - \zeta$ is important to the proof of Catalan conjecture. Let $\Delta = \operatorname{Gal}(K/\mathbb{Q}), \ \sigma : (\mathbb{Z}/p\mathbb{Z})^{\times} \xrightarrow{\sim} \Delta$ the isomorphism such that $\sigma_a(\zeta) = \zeta^a$. Denote by

$$\mathbb{Z}[\Delta]^+ = \{\sum_a n_a \sigma_a \in \mathbb{Z}[\Delta] \mid n_a = n_{p-a}\} = (1 + \sigma_{-1})\mathbb{Z}[\Delta],$$

denote by deg : $\mathbb{Z}[\Delta] \to \mathbb{Z}$ be the degree map deg $(\sum n_a \sigma_a) = \sum_a n_\sigma$. Then we have

Theorem 4.17 (Mihailescu). [2] If $\theta \in (1 + \tau)\mathbb{Z}[\Delta]$ with $q | \deg \theta$ such that $(x - \zeta)^{\theta} \in K^{\times,q}$, then $\theta \in q\mathbb{Z}[\Delta]$.

Proof. Note that if $\alpha \in K^{\times,q}$, then there exists a unique $\alpha^{1/q} \in K^{\times}$. Consider

$$(x - \zeta)^{\theta/q} = x^{\deg \theta/q} (1 - \zeta x^{-1})^{\theta/q} = x^{\deg \theta/q} G(x^{-1}),$$

where G(t) is the analytic function around t = 0 defined as follows. Write $\theta = \sum n_a \sigma_a$ and fix an embedding of $\zeta + \zeta^{-1} \in \mathbb{R}$, then

$$G(t) = (1 - \zeta t)^{\theta/q} = \prod_{a} (1 - \zeta^{a} t)^{n_{a}/q} = \prod_{a} \sum_{i=0}^{\infty} \binom{n_{a}/q}{i} (-\zeta^{a})^{i} t^{i}$$
$$= \sum_{k=0}^{\infty} \left(\sum_{\sum i_{a}=k} \prod_{a} \binom{n_{a}/q}{i_{a}} (-\zeta^{a})^{i_{a}} \right) t^{k} = \sum_{k=0}^{\infty} \frac{a_{k}}{k! \cdot q^{k}} t^{k},$$
12

where the summation over a should be regarded as summation over a mod ± 1 using $\theta \in \mathbb{Z}[\Delta]^+$

$$a_{k} = k!q^{k} \sum_{\sum_{a} i_{a} = k} \prod_{a} {\binom{n_{a}/q}{i_{a}}} (-\zeta^{a})^{i_{a}}$$
$$= \sum_{\sum_{i_{a} = k}} \frac{k!}{\prod_{a} i_{a}!} \prod_{a} n_{a}(n_{a} - q) \cdots (n_{a} - (i_{a} - 1)q)(-\zeta^{a})^{i_{a}} \in \mathcal{O}_{K}$$
$$\equiv \left(-\sum_{a} n_{a}\zeta^{a}\right)^{k} \pmod{q}$$

Note that q is unramified over K, it is enough to show that $q|a_i$ for some i > 0. We may assume that $\theta = \sum_a n_a \sigma_a$ with

$$n_a \ge 0, \ \forall a; \quad 0 < k := \deg \theta / q \le \frac{p-1}{2},$$

and we will show that $q|a_k$. Consider

$$\beta := q^{k + \operatorname{ord}_q k!} x^k \left(G(x^{-1}) - G_k(x^{-1}) \right) \in \mathcal{O}_K, \quad \beta \equiv a_k \mod q.$$

Here we have $x^k G(x^{-1}) \in \mathcal{O}_K$ since $n_a \ge 0$ for all a. We will actually show that $\beta = 0$ so that $q|a_k$ and complete the proof. Comparing G(t) and $H(t) := (1-t)^{-k}$, by Taylor's theorem

$$\begin{aligned} \beta &| \le q^{k + \operatorname{ord}_{q} k!} |x|^{k} \left(H(|x|^{-1}) - H_{k}(|x|^{-1}) \right) \\ &\le q^{k + \operatorname{ord}_{q} k!} |x|^{k} \left| |x|^{-(k+1)} {\binom{-k}{k+1}} (1 - |x|^{-1})^{-k - (k+1)} \right| < 1 \end{aligned}$$

where the last inequality follows from $|x| \ge q^{p-1} + q$ by Proposition 4.5 and $0 < k \le (p-1)/2$.

Note that $\theta \in \mathbb{Z}[\Delta]^+$. For any $\sigma \in \Delta$ and $t \in \mathbb{Q}$ with |t| < 1,

$$\left((1-\zeta t)^{\theta/q}\right)^{\sigma} = (1-\zeta t)^{\sigma\theta/q} \in \mathbb{R}$$

(Since they are q-th root of $(1 - \zeta t)^{\theta} \in \mathbb{R}$.) Thus by the same argument, $|\beta^{\sigma}| < 1$ for all $\sigma \in \Delta$, and therefore $\beta = 0$ and $q|a_m$.

4.4. Thaine's theorem and $[x-\zeta]^+$. As (p-1,q) = 1, we have natural isomorphism of $\mathbb{Z}_q[\Delta]$ -algebras

$$\mathbb{Z}_q[\Delta] = \bigoplus_{[\chi]} \mathbb{Z}_q[\operatorname{Im} \chi],$$

here χ runs over all q-adic characters of Δ and $[\chi]$ is the $\operatorname{Gal}(\overline{\mathbb{Q}}_q/\mathbb{Q}_q)$ -orbit of χ . For any $\mathbb{Z}_q[G]$ -module M, denote $M_{\chi} = M \otimes_{\mathbb{Z}_q[G]} \mathbb{Z}_q[\operatorname{Im} \chi]$.

Theorem 4.18. [4][5] Suppose (q, p - 1) = 1, then for any $\chi : \Delta \to \overline{\mathbb{Q}}_q$ a even character, then $\#(E/C)[q^{\infty}]_{\chi} = \#\mathrm{Cl}(K)[q^{\infty}]_{\chi}$. In particular, two $\mathbb{Z}_q[\Delta]$ -modules $(E/C)[q^{\infty}]_{\chi}$, $\mathrm{Cl}(K)[q^{\infty}]_{\chi}$ have same Jordan-Holder series.

Corollary 4.19. $E/CE^q \simeq \operatorname{Cl}(K)[q]^+$ as *R*-modules.

Corollary 4.20.

$$(\operatorname{Sel}(K,\mu_q)^+)^{\operatorname{Ann}_R(E/CE^q)} \subset CE^q/E^q$$

here view CE^q/E^q as subgroup of $Sel(K, \mu_q)$.

Remark 4.21. The proof of the corollary only use the property $\operatorname{Ann}_R(E/CE^q) \subset \operatorname{Ann}_R\operatorname{Cl}(K)[q]^+$. And this property can be prove only using a result of Thaine: $\operatorname{Ann}_{\mathbb{Z}_q[\Delta]}((E/C)[q^{\infty}]) \subset \operatorname{Ann}_{\mathbb{Z}_q[\Delta]}(\operatorname{Cl}(K)[q^{\infty}]^+)$.

Corollary 4.22. Assume the Catalan's equation has a solution in $\mathbb{Z}^2_{\neq 0}$, then

$$\operatorname{Ann}_R(C_q E^q / E^q) \operatorname{Ann}_R(E / CE^q) \subset \operatorname{Ann}_R(E / E^q).$$

Proof. Consider $[(x - \zeta)^+] = \left[\frac{x-\zeta^+}{1-\zeta}\right] [(1-\zeta)^{-1}]^+ \in K^{\times}/K^{\times,q}$. Note that $\left[\frac{x-\zeta}{1-\zeta}\right]^+ \in \operatorname{Sel}(K,\mathbb{Q})$ and $[1-\zeta]^{\theta}$ is represented by cyclotomtic unit for any θ with deg $\theta = 0$. By Corollary 4.20, for any $\theta \in \operatorname{Ann}_R((E/CE^q)) \cap R^{\deg=0}$, we have $[(x-\zeta)^+]^{\theta} \in CK^{\times}/K^{\times,q}$, and thus in $C_qK^{\times}/K^{\times,q}$ by first remark of Remark 4.16. By rigidity of Mihailescu element

$$0 = \operatorname{Ann}_{R}(C_{q}E^{q}/E^{q})(\operatorname{Ann}_{R}((E/CE^{q})) \cap R^{\operatorname{deg}=0}).$$

As the norm element N kill E/E^q and $\mathbb{F}_q \cdot N + R^{\deg=0} = R$, thus $\operatorname{Ann}_R(C_q E^q/E^q) \operatorname{Ann}_R(E/CE^q) \subset \operatorname{Ann}_R(C_q E^q/E^q) (\operatorname{Ann}_R(E/CE^q) \cap R^{\deg=0} + \mathbb{F}_q N) \subset \operatorname{Ann}_R(E/E^q)$

4.5. Proof of the main theorem.

Theorem 4.23. [1][3] Assume q < p are two odd primes, then the following equation

$$x^p - y^q = 1$$

has no solution in nonzero integers.

Proof. If (x, y) is a solution, by Corollary 4.22 and the second remark of Remark 4.16, we have

$$\operatorname{Ann}_R(CE^q/C_qE^q) = 0$$

contradict with the following proposition

Proposition 4.24. If q < p, then $C_q E^q \neq C E^q$.

Proof. Let ζ be a primitive p-th root of unity, consider the cyclotomic unit $1 + \zeta^q = \frac{1-\zeta^{2q}}{1-\zeta^q}$. If $1+\zeta^q \in C_q$, then $1 + \zeta^q \equiv u^q \pmod{q^2}$ for some $u \in E$. We have $(1+\zeta)^q \equiv u^q \pmod{q}$, as q is unramified in K, $1+\zeta \equiv u \pmod{q}$, thus $(1+\zeta)^q \equiv u^q \pmod{q^2}$. This implies that $(1+\zeta)^q \equiv 1+\zeta^q \pmod{q^2}$. Consider the polynimial $1/q((1+T)^q - T^q - 1) \in \mathbb{Z}[T]$, it has p-1 distinct solution in $\mathbb{Z}[\mu_p]/(q^2)$, we must have $p \leq q$, contradiction.

5. Femart Equation

Let $K = \mathbb{Q}(\mu_p)$.

Theorem 5.1. [6] Let p be a odd prime that does not divides #Cl(K), then the equation

 $x^p + y^p = z^p$

has no solution in nonzero integers.

Proof. Let (x, y, x) be a solution of Femart equation in $(\mathbb{Z} \setminus \{0\})^3$.

• If $p \nmid xyz$, then for any primitive *p*-th root of unity, $x + \zeta^{\pm}y \in \text{Sel}(K, \mu_p)$ and $x + \zeta^{\pm}y$ is a unit at *p*. Let *E* (resp. \mathcal{O}) be the group of units (resp. integers) of *K* and Cl(*K*) the ideal class group of *K*. Consider the exact sequence:

$$0 \to E/E^p \to \operatorname{Sel}(K, \mu_p) \to \operatorname{Cl}(K)[p] \to 0.$$

By assumption, Cl(K)[p] = 0. And we have a natural map

$$\alpha: E/E^p \to E_v/E^p_v \simeq 1 + \pi E_v/(1 + \pi E_v)^p \twoheadrightarrow 1 + \pi \mathcal{O}/1 + p\mathcal{O},$$

here v is the prime of K above p and $\pi = 1 - \zeta$. The image of $x + \zeta^{\pm} y$ in $1 + \pi \mathcal{O}/1 + p\mathcal{O}$ is $\frac{x+\zeta^{\pm} y}{x+y}$. As every element x in $\mathbb{Z}[\zeta]$ has the property $x^p \equiv a \pmod{p}$ for some $a \in \mathbb{Z}$. Write $\frac{x+\zeta^{\pm} y}{x+y} = \zeta^{\pm r} u^+ a \in 1 + \pi \mathcal{O}/1 + p\mathcal{O}$ for $u^+ \in \mathcal{O}_E^{\times,+}$ and $a \in \mathbb{Z}$, then we have $\frac{x+\zeta y}{x+y} = \zeta^{2r} \frac{x+\zeta^{-1} y}{x+y}$ in $1 + \pi \mathcal{O}/1 + p\mathcal{O}$. Thus $x + \zeta y = \zeta^{2r} (x + \zeta^{-1} y) \pmod{p}$. This will contradicts with the following fact.

Fact 5.2. ζ^i , $i = 1, \dots, p-1$ is an integral basis of \mathcal{O} .

- If p|xyz, may assume p|z and (p, xy) = 1. Let ζ be a primitive p-th root of unity. We may prove a stronger statement: There is no solution of equation $x^p + y^p = u(1-\zeta)^{kp} z_0^p$ with $x, y, z \in \mathcal{O} \cap \mathcal{O}_{(p)}^{\times}$ co-prime, $u \in \mathcal{E}, k \in \mathbb{Z}_{>0}$. Suppose we have a solution, then
 - (i) $\xi := \frac{x + \zeta y}{1 \zeta}$ and $\overline{\xi}$ are in Sel (K, μ_p) and they are in $\mathcal{O} \cap \mathcal{O}_{(p)}^{\times}$.
 - (ii) $\frac{x+y}{1-\zeta} = u'(1-\zeta)^{(k-1)p}\gamma^p$ with $u' \in \mathcal{E}$ and $\gamma \in \mathcal{O} \cap \mathcal{O}_{(p)}^{\times}$.
 - (*iii*) $\xi, \overline{\xi}$ and $\frac{x+y}{1-\zeta}$ are coprime.

Proposition 5.3. ξ and $\overline{\xi}$ are in the same class of Sel (K, μ_p) .

Once they are in the same class, we can write $\xi = v\alpha^p$ and $\overline{\xi} = v\beta^p$ for some $v \in \mathcal{E}$ and $\alpha, \beta \in \mathcal{O} \cap \mathcal{O}_{(p)}^{\times}$. We have $\alpha^p + (-\beta)^p = v^{-1}u'(1+\zeta)(1-\zeta)^{(k-1)p}\gamma^p$. By descent, we prove the theorem.

Proof of proposition. As p is regular, $\xi, \overline{\xi}$ represented by element in \mathcal{E} .

Lemma 5.4 (Kummer's lemma). If p is regular, then $x \in \mathcal{E}/\mathcal{E}^p$ is trivial if and only if x congruent to an integer modulo p in \mathcal{O} .

The Kummer lemma is equivalent to the map α is injective. As ξ and $\overline{\xi}$ are *p*-adic units, $\alpha(\xi), \alpha(\overline{\xi})$ equivalent to the image of $\xi, \overline{\xi}$ as element in \mathcal{E}_v under the map

$$E_v/E_v^p \simeq \mu_{p-1} \times (1+\pi\mathcal{O}_v)/\mu_{p-1} \times (1+\pi\mathcal{O}_v)^p \twoheadrightarrow 1+\pi\mathcal{O}_v/1+p\mathcal{O}_v \simeq 1+\pi\mathcal{O}/1+p\mathcal{O}.$$

As $p|_{1-\zeta^{\pm}}^{x+y}$, we have $\alpha(\xi) = \alpha(\overline{\xi})$, thus they are in the same class in Sel (K, μ_p) .

Algebraic proof of Kummer's lemma. Sufficient to prove if $u \in \mathcal{E}$ is congruent to an integer modulo p, then $K(u^{1/p})$ is unramified. Let v be a finite place of K. If v does not divides p, then $\text{Disc}(u^{1/p}, \zeta u^{1/p} \cdots, \zeta^{p-1} u^{1/p}) \in D_{K(u^{1/p})/K}$ is a v-adic unit. When v divides p, As u congruent to a nonzero integer modulo p, replace u by u^{p-1} may assume $u \equiv 1 \pmod{p}$. Consider the norm of u, we must have $u \equiv 1 \mod \pi p$, where $\pi = 1 - \zeta$. Now Consider the polynomial $\pi^{-p}((\pi x - 1)^p + u) \in \mathcal{O}[x]$, its discriminant is a p-adic unit. Thus $K(u^{1/p})$ is unramified everywhere. \Box

$$\Box$$

6. Exercises and Projects

6.1. Exercises.

Exercise 1. Let Δ be a finite abelian group, p be a prime such that $p \nmid \#\Delta$. Let L be a finite extension of \mathbb{Q}_p which contains all the values of all the characters od Δ . Let M be a finite $\mathbb{Z}_p[\Delta]$ -module, for any character $\chi : \Delta \to \mathcal{O}_L^{\times}$, define $M^{\chi} := \{a \in M \otimes \mathcal{O}_L \mid a^{\sigma} = \chi(\sigma)a \text{ for all } \sigma \in \Delta\}$ and $M_{\chi} := (M \otimes \mathcal{O}_L)/\langle a^{\sigma} - \chi(\sigma)a \mid a \in M \otimes \mathcal{O}_L, \sigma \in \Delta \rangle$.

- (i) Prove that the natural map $M^{\chi} \to M_{\chi}$ is an isomorphism.
- (ii) Let M and N be finite $\mathbb{Z}_p[\Delta]$ -modules. Prove that the followings are equivalent:
 - (a) M and N have the same Jordan-Hölder series;
 - (b) $\#M_{\chi} = \#N_{\chi}$ for all character $\chi : \Delta \to \mathcal{O}_L^{\times}$.

Exercise 2. Let K be a number field, $\alpha \in K^{\times}$, $n \ge 1$ be an integer, $L = K(\sqrt[n]{\alpha})$. Let $\mathfrak{p} \nmid n$ be a prime ideal of \mathcal{O}_K . Prove that L/K is unramified at \mathfrak{p} if and only if $n \mid \operatorname{ord}_{\mathfrak{p}}(\alpha)$.

Exercise 3. Let K be a totally real field which is Galois over \mathbb{Q} . Let $G = \operatorname{Gal}(K/\mathbb{Q})$. Prove that there is a unit $u \in \mathcal{O}_K^{\times}$ such that $\mathbb{Z}[G]u$ is finite index in \mathcal{O}_K^{\times} . Show that $\mathcal{O}_K^{\times} \otimes \mathbb{Q} \cong \mathbb{Q}[G]/N_G$ as $\mathbb{Q}[G]$ -modules in particular. (Hint: read the proof of Drichlet's unit theorem.)

Exercise 4. Let G be a finite abelian group. Let p be a prime number such that $p \nmid |G|$. For a character $\chi : G \to \overline{\mathbb{Q}_p}^{\times}$, let $\mathbb{Z}_p[\chi]$ denote the ring generated by the values of χ over \mathbb{Z}_p . Then $\mathbb{Z}_p[\chi]$ is a $\mathbb{Z}_p[G]$ module by $g(a) = \chi(g)a$.

- (1) Prove that $\mathbb{Z}_p[\chi] \cong \mathbb{Z}_p[\chi^{\sigma}]$ as $\mathbb{Z}_p[G]$ -modules. Here $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ and $\chi^{\sigma} = \sigma \circ \chi$ is also a character of G (we call such two characters are $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ conjugate).
- (2) Prove that

$$\mathbb{Z}_p[G] \cong \prod_{\chi/\sim} \mathbb{Z}_p[\chi],$$

where $\chi_1 \sim \chi_2$ means they are $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ conjugate. Prove that for any $\mathbb{Z}_p[G]$ -module M,

$$M \cong \prod_{\chi/\sim} M \otimes_{\mathbb{Z}_p[G]} \mathbb{Z}_p[\chi].$$

- (3) Let M and N be two finite generated free \mathbb{Z}_p -modules with an action of G. Prove that if $M \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \cong N \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ as $\mathbb{Q}_p[G]$ -modules, then $M \cong N$ as $\mathbb{Z}_p[G]$ -modules.
- 6.2. Projects. ??? Read Euler system argument ???

Recall that $K^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1}), \Delta^+ = \operatorname{Gal}(K^+/\mathbb{Q}), q$ is a prime not dividing $\frac{p(p-1)}{2}$, and $R^+ = \mathbb{Z}_q[\Delta^+]$. Recall that $\mathcal{E} := \mathcal{O}_K^{\times}, \mathcal{E}^+ := \mathcal{O}_{K^+}^{\times}, \mathcal{C} := \left\langle \frac{\zeta_p^b - 1}{\zeta_p - 1} \mid b \in (\mathbb{Z}/p\mathbb{Z})^{\times} \right\rangle \cdot \mu(K) \subset \mathcal{E}$, and $\mathcal{C}^+ := \mathcal{C} \cap \mathcal{E}^+$. Let $n \geq 1$ be a sufficiently large integer such that q^n annihilates $(\mathcal{E}^+/\mathcal{C}^+) \otimes_{\mathbb{Z}} \mathbb{Z}_q$ and $\operatorname{Cl}(K^+) \otimes_{\mathbb{Z}} \mathbb{Z}_q$. Then $(\mathcal{E}^+/\mathcal{C}^+) \otimes_{\mathbb{Z}} \mathbb{Z}_q = (\mathcal{E}^+/\mathcal{C}^+) \otimes_{\mathbb{Z}} (\mathbb{Z}/q^n\mathbb{Z}) = \mathcal{E}^+/(\mathcal{E}^+)^{q^n}\mathcal{C}^+$ and $\operatorname{Cl}(K^+) \otimes_{\mathbb{Z}} \mathbb{Z}_q = \operatorname{Cl}(K^+) \otimes_{\mathbb{Z}} (\mathbb{Z}/q^n\mathbb{Z}) = \operatorname{Cl}(K^+)/\operatorname{Cl}(K^+)^{q^n}$. Let ℓ be a prime $\equiv 1 \pmod{p^n}$. Then ℓ splits completely in K^+ . Let \mathfrak{l} be a prime of K^+ above ℓ .

Let $L = \mathbb{Q}(\zeta_{\ell})$, then K^+ and L are linearly disjoint over \mathbb{Q} . Let $M = K^+L$:

Since ℓ is unramified in K^+ and is totally ramified in L, the \mathfrak{l} is totally ramified in M. Let \mathfrak{L} be the unique prime ideal of M over \mathfrak{l} , then $\mathfrak{l}\mathcal{O}_M = \mathfrak{L}^{\ell-1}$. The $(\zeta_\ell - 1)\mathcal{O}_L$ is the unique prime ideal of L above ℓ , and $\ell\mathcal{O}_L = (\zeta_\ell - 1)^{\ell-1}\mathcal{O}_L$. Any prime of K^+ above ℓ is of form \mathfrak{l}^{σ} for a unique $\sigma \in \Delta^+$, and we have $\ell\mathcal{O}_{K^+} = \prod_{\sigma \in \Delta^+} \mathfrak{l}^{\sigma}$. Similarly, any prime of M above ℓ is of form \mathfrak{L}^{σ} for a unique $\sigma \in \operatorname{Gal}(M/L) \xrightarrow{\sim} \operatorname{Gal}(K^+/\mathbb{Q}) = \Delta^+$, and we have $(\zeta_\ell - 1)\mathcal{O}_M = \prod_{\sigma \in \operatorname{Gal}(M/L)} \mathfrak{L}^{\sigma}$ as well as $\ell\mathcal{O}_M = \prod_{\sigma \in \operatorname{Gal}(M/L)} (\mathfrak{L}^{\sigma})^{\ell-1}$.

Lemma A.1. Let $\delta \in \mathcal{C}^+$ be an element. Then there exists an element $\varepsilon \in \mathcal{O}_M^{\times}$ such that $N_{M/K^+}(\varepsilon) = 1$ and $\varepsilon \equiv \delta \pmod{\mathfrak{L}^{\sigma}}$ for all $\sigma \in \Delta^+$ (or equivalently, $\varepsilon \equiv \delta \pmod{\zeta_{\ell} - 1}$).

Proof. To be added

Fix a generator s of $(\mathbb{Z}/\ell\mathbb{Z})^{\times}$ which gives a generator τ of $\operatorname{Gal}(M/K^+)$ by $\zeta_{\ell} \mapsto \zeta_{\ell}^s$. The $\tau \mapsto \varepsilon$ extends to a cocycle $\operatorname{Gal}(M/K^+) \to M^{\times}$ by the condition $\operatorname{N}_{M/K^+}(\varepsilon) = 1$. Hence by Hilbert's Theorem 90, $H^1(M/K^+, M^{\times}) = 0$, the above cocycle is a coboundary, which means that there exists $\alpha \in M^{\times}$ such that $\alpha^{\tau}/\alpha = \varepsilon$.

To be added...

References

- [1] Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture.
- [2] Bilu, Catalan's conjecture.
- [3] Metsankyl, Catalan's conjecture: Another old Diophantine problem solved.
- [4] Greenberg, On p-adic L-functions and cyclotomic fields.II.
- [5] Rubin, The Main conjecture. (Appendix in Serge lang's Cyclotomtic fields I and II)
- [6] Washington, Introduction to cyclotomtic fields.
- [7] Serge Lang, Cyclotomtic fields I and II.[8] Schoof, Catalan's conjecture.