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1. IDEAL CLASS GROUPS

1.1. Ideal class groups and unit groups. Let K be a number field. Denote Cl(K) be its ideal class
group and O be its group of units.

Theorem 1.1. We have

(1) CI(K) is a finite abelian group.
(2) O 2 Z 271 x u(K), where r1, v are the number of real and complex places of K, u(K) is
the set of roots of unity in K, which is a finite cyclic group.

Summary. (1) Note that for any M > 1, there exist only finite many integral ideals of Ok with norm
bounded by M. Thus enough to show exists Mg such that for any fractional ideal a, exists a € a such
that N(aa™!) < M. A fractional ideal a can be viewed as a lattice in R™ x C"2 ~ R" here n = [K : Q.
Consider the following centrally symmetric convex connected region

™1 T2
U= {(@y) e R x T 3 Jaif + 3 2yl < ¢},
i=1 j=1

then exists C such that for any a, if t > CxN(a)'/™ holds (equivalently, exists N such that for any a,
if Vol(U,) > NkgN(a) holds ), then exists 0 # « € anN U;. We thus have

N(a) < (W)"

n



(2) Counsider the log map:

0: 0% =Ry (log|o(u)

a'i)a'-n
here o; runs over all infinite places and | - |, is the normalized valuation. Then ker¢ = u(K) and the

image lies in the hyperplane R¥=". The image in discrete in R*®=?, thus enough to show that Im? is a
(full) lattice of R¥=0.

Fact 1.2. Let n =11 + 1y and A € M5, (R) such that every row lies in R*¥=%. If a;; > 0 for all i and
a;; <0 for alli # j, then rank A =n — 1.

By the above fact enough to find for each infinite place o; an element u; € O such that |o;(u)] < 1
for all j # . Thus enough to show exists Ck large enough such that exists a sequence {a, }, in Ok with
norm bounded by Ck such that {|o;(an)|}n is strictly decreasing for any j # . If this is down, choose
m > n such that (a,,) = (an). Then a,,/a, is what needed. We now show the existence of the sequence:
Consider the following certrally symmetric convex connected region in R™+72;

Ve i= {x € R |2il,, < ¢ andHci = t}.
i

Then exists Ny such that for any ¢ > Ng and any ¢ = (¢1,- -+, Cpy4r,) With [[,¢; = ¢, exists 0 # a €
Vet N Ok. By induction we can find the needed sequence.

O
1.2. Variation.

1.2.1. Variation of ideal class group. Recall a modulus m of K is a formal product m; - my, of an
integral ideal m; and a subset my, of real places of K. The ray class group modulo m is defined by
CUK)m := I™ /Py 1, here I™ is the group of prime to m; fractional ideals and Py 1 is the subgroup
of principal ideals which represented by elements o € K* with o = 1 (modmy) and o(a) > 0 for all
o € my. If m =1, we get the ideal class group. Denote K, the subgroup of K which is units at my and
K1 the subgroup of Ky, that congruent to 1 modulo my. Then we have the following exact sequence

020 NKn/Og NKni1 — Kn/Kn1 — Cl(K)m — CI(K) — 1.
In particular, #CIl(K), is finite. We also have a canonical isomorphism
Ku/Km1> [] {21} x (Ox/mp)*.
OEMo

1.2.2. Variation of units. Let S be a finite set of finite places of K, the group of S-units Ok s of K is
the subgroup of K* consists of elements which are units outside S. Then we have the following exact
sequence

(ordy (+))ves

1— 0} = Ok g z
and the cokernel of the last map is finite. Thus O g ~ O @ Z#S ~ Zritra+#5-1,
1.3. Class Number Formula.

Theorem 1.3. Let K be a number field. Then we have the class number formula

s () — 2120 #AU) Reg(OF)

WK |DK|

1.4. Chebotarev density theorem. Let L/K be a finite Galois extension of number fields. Let p be
a prime of K unramified in L and let P be a prime of L above p. Define the Frobenius Frobg(L/K) to
be the element in Gal(L/K) such that Frobg(L/K) stabilizes ¢ and is x — 2#(Ox/?) on Of /B. For
o € Gal(L/K), we have Frobg-(L/K) = oFrobg(L/K)o™?, therefore, we can define Froby(L/K) :=
[Frobg (L/K)] to be the conjugacy class of Frobg(L/K) in Gal(L/K) for any P above p. In particular,
if L/K is abelian, then Frob,(L/K) is indeed an element of Gal(L/K).

Theorem 1.4 (Chebotarev density theorem). Let o € Gal(L/K) be any fized element. Then among all
the primes of K unramified in L, the primes p which satisfy Frob,(L/K) = [o] have density #[o]/[L : K].

In particular, there exists infinitely many prime p of Og such that Frob,(L/K) = [o], as well as
infinitely many prime B of Oy, such that Frobyp(L/K) = o.
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1.5. Class field theory.

Theorem 1.5. Let K be a number field. Let Hy be the maximal abelian extension over K unramified
everywhere. Then there is a natural isomorphism (which is Gal(K/Ky)-equivariant if Ko is any subfield
of K such that K/Ky is Galois):

Cl(K) = Gal(Hk /K), [p] — Froby(Hg /K).
Corollary 1.6. For any C € CI(K), the density of prime ideals p such that p € C is 1/#C1(K).

1.6. The class number formula for cyclotomic fields. If K is abelian over Q, we have (x(s) =
[1, L(s,x), here x runs over all primitive characters associated to characters of Gal(K/Q). Thus

1 T2 ><
27 (2m) 2 #Cl(K) Reg(Ox H L(s.x).
|Dk|

x#1

Now let K be the cyclotomic field Q((,), p be an odd prime. Denote ¢ the complex conjugation in
Gal(K/Q) and K = Q({, + ¢, ') be the fixed field of ¢, then the natural norm map 1+ ¢ : CI(K) —
CI(K ™) is surjective. Define the minus part CI(K)~ to be the kernel of this map.

If x : (Z/pZ)* — C* is a non-trivial Dirichlet character, we have the special value formula of the
Dirichlet L-function [7]

—M Z X(a)log |1 — (7], if x is even and non-trivial,

p
L(1,x) = a€(Z/p2)"
71'2727 1,%> 1I X 1S O .

Here G(x, (p) == > e (z/pm)x X(a)(y is the Gauss sum. Therefore we have

Proposition 1.7. [7]

+
#CI(KT) = W II > —x@lgl-¢l.
X;él even a mod p
#C )" =2 [] - BLX
x odd

Denote € (resp. £7) the group of units of K (resp. KT). Let C be the subgroup of £ generated by

b7
%, (b,p) = 1 and roots of unity. Let Ct =CNK™.

Proposition 1.8. [7] We have
#COUKT) = #(£/C) = #(E7/CT)

Let A = Gal(K/Q) and R = Z[A]. For a € (Z/pZ)* let 0, € A be the element given by ¢, + (7.
The following element

-1
= - ao,
p a=1
is called the Stickelberger element. The Stickelberger ideal is defined by S = RN R6.

Proposition 1.9. [7] We have
#CUK)™ =#(R™/S7)
1.7. A refinement of class number formula for cyclotomic fields. Let K be the cyclotomic field

Q(¢p) where p is an odd prime and K+ = Q({, + C;l) be the maximal real subfield of K.

Theorem 1.10. Let g be a prime such that ¢ { p(p — 1). Let L be a finite extension of Qq and x :
Gal(K/Q) — Of be an odd character. Then

# (ClK) ®z OL),, = | By x|y F %l

Equivalently, CI(K)~ ® Z, and (R~ /S™) ® Z, have the same Jordan-Holder series as Z,[A]-modules,
which is a refinement of the minus class number formula (Prop. 1.9).
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Theorem 1.11. Let g be a prime such that q ¢t @. Let L be a finite extension of Qg and x :
Gal(K*/Q) — OFf be a character. Then

# (Cl(KJr) ®Z OL)X = # ((5+/C+) ®Z OL)X .
Equivalently, CI(K 1) ®Z, and (£ /C") @ Z, have the same Jordan-Holder series as Z,[AT]-modules,
here AT = Gal(K+/Q). This is a refinement of the plus class number formula (Prop. 1.8).
corollaries:

Proposition 1.12. Let ¢ be a prime such that ¢ { p(p —1). Then S ®z Z, annihilates Cl(K) @z Z,,.

Theorem 1.13 (Thaine’s Theorem). Let ¢ be a prime such that q { @. Let RT = Z,[A*]. Then
2 Anng+ ((E1/CT) @2 Zy) C Annpgs (CUKT) @7 Zq) -
In fact, we have the Stickelberger’s Theorem which is slightly stronger than Proposition 1.12:
Theorem 1.14 (Stickelberger’s Theorem). The Stickelberger ideal S annihilates C1(K).

We present a proof of Stickelberger’s Theorem in §2, and a proof of the following weak version of
Thaine’s Theorem in §3, without using the refinement of class number formula.

Theorem 1.15. Let q be a prime such that gt p(p —1). Let RT =TF,[AT]. Then
Amng+ ((E7/CT) ®zFy) € Anng+ (CHKT) @2 F,) .

2. STICKELBERGER’S THEOREM

Recall that K = Q((p), A = Gal(K/Q) and R = Z[A]. We are going to prove the Stickelberger’s
Theorem (Thm. 1.14), namely, the Stickelberger ideal S := R N R annihilates C1(K).

Lemma 2.1. Let € € CI(K) be an ideal class. Then there exists infinitely many prime £ = 1 (mod p)
such that there exists a prime [ of K above £ satisfying | € €.

Proof. Consider the Hilbert class field Hx of K. Then Hg/Q is Galois. Consider the element o¢ €
Gal(Hi /K) C Gal(Hk/Q) corresponding to €. By Chebotarev density theorem, there exists infinitely
many prime £ of Hy such that Frobe(Hg/Q) = o¢. Take £ = £N7Z and [ = £N Ok then they satisfy
the desired condition. O

Therefore we only need to prove that for any such [ and any 3 € R such that 30 € R, %% is principal.
Let L = Q(¢), then K and L are linearly disjoint over Q. Let M = K L:

F e
[ Q) =K L=Q(C) (¢—1)
L A\\ Q /(Z/zz)X L

Since /¢ is unramified in K and is totally ramified in L, the [ is totally ramified in M. Let £ be the
unique prime ideal of M over [, then [0y, = £/~1. The (¢, — 1)Oy is the unique prime ideal of L above
¢, and (Of = (¢ — 1)*"'Op. Any prime of K above £ is of form [° for a unique o € A, and we have
Ok = l,en!°. Similarly, any prime of M above ¢ is of form £7 for a unique o € Gal(M/L) =
Gal(K/Q) = A, and we have (¢ — 1)On = [, eqaiar/r) £7 as well as (Oy = ngGal(M/L)(S”)é_l.
Let s be a generator of (Z/¢Z)* and define a surjective group homomorphism  : (Z/¢Z)* — p, by
s+ (p. Consider the Gauss sum G(x, (¢) € On. We have G(x, (¢) - G(x, () = ¢, therefore we may write

G(XaCZ)OM = H (Ea)r(ok
oeGal(M/L)

where for each o, r(o) is an integer satisfying 0 < (o) < {—1. If a € (Z/pZ)*, denote by r(a) :=r(o;").

Lemma 2.2. There exists an element ¢ € (Z/pZ)* such that for any a € (Z/pZ)* we have r(a) =
(-1 {%}, here {%} is the fractional part o %. In particular, we have 0 < r(a) < £ — 1.
4



Proof. Let a € (Z/pZ)* be an element and denote o := o, !. Consider the quantity G(x, ¢;)/(¢—1)"@) €
M, then by definition it is a £7-unit. Since any prime above ¢ is totally ramified over M /K, for any
T € Gal(M/K), any o € Gal(M/L) and any x € Oy, we have 27 = z (mod £7). Now we take 7 to be
Ce — ¢, then we have

0#

G(XaCZ) _ ( G(X»C@)
(

C=D@ ~\ (G- 1>r<a>> mod 7).

On the other hand, we have G(x, (/)" = ZaG(Z/pZ « X(@)G = X(s71) X oe@ypmx X(@)¢F =G MG (x. G)

aswell as (¢ —1)" =¢) — 1= (¢ —1)(¢] -+ ¢+ 1), hence
G(X7 CZ) " _ C_l G(X7 C@) _ C_l G(Xv C@) o
((@ - W)) TG G )@ G- )@ @ (G- 1y M)

therefore s™(*) = Cp_l (mod £7), taking o~! and note that both side are in Ok, we obtain s"(®)
(N7 = ¢ (modl). Note that Ok /I = Z/¢Z and that { is unramified in K, we have (;' € (O /I
is of exact order p, hence there exists ¢ € (Z/pZ)* (of course independent of a) such that ¢ *
s=D/P (mod ). Therefore s"(® = s2¢(¢=1/P (mod ), which means r(a) = ac- (£ —1)/p (mod £ —
combined with 0 < r(a) < £ — 1 we obtain the desired result.

X

N3

o=

In the above proof we actually shows that for any 7 € Gal(M/K), G(x,¢)"/G(x,Ce) € up C Ok.
Therefore G(x, () ™! € Ok. Note that for any o € Gal(M/L), we have [°Oy; = (£°)*~!, hence

1

G(x,¢)' ok = H (7)) = (
)

oce€Gal(M/L

r(a)a;1> [=(({—1)o0)1

a=1

is a principal ideal; here we note that >-°_1 r(a)o; ' = P21 (0 — 1) { }cr;l =l —1)o.b.

Let v := (6,'8)G(x, () € M, then v*~! = (67 8)G(x, () " € K and v/ 71Ok = ((£ — 1)) is the
(¢ — 1)-th power of the fractional ideal (86)l of K. Hence the extension K (vy)/K is unramified outside
¢ —1 (exercise 2). However, K(v) C M and M/K is is totaly ramified at ¢, so we must have K(v) = K,
v € K and 7yOk = (86)l is principal. This completes the proof of Stickelberger’s Theorem.

3. THAINE’'S THEOREM

In this section we prove Theorem 1.15.
Recall that K+ = Q((p+¢, "), AT = Gal(K™/Q), ¢ is a prime not dividing p(p—1), and RT = F,[AT].

b
Recall that £ := O, €T := Ok, C := <gz:1 (Z/pZ)X>- uw(K) C € and Ct := CNET.

_ b

Obviously we have (£7/CT) @ F, = E1/(ET)ICT. Note that <p71 —(p*bgzi, so we also have
¢b-1 _

C:<<:71 T>'“(K)'

Fact 3.1. The ET ®F, is a cyclic Fy[AT]-module.

Lemma 3.2. Let € € CI(K') ® F, be a class. Then there exists infinity many prime £ = 1 (mod pq)
such that there exists a prime | of KT above ¢ satisfying | € € and such that the natural map

(3.1) ET@F, = (Og+ [lOk+) @Fy = [ (Ox+ /) @F, = [] (z/tz)"

ceAt cEAT

18 1njective.



Proof. Let H be the maximal unramified abelian extension of KT such that Gal(H/K™) is killed by q.
Then Gal(H/K*) 2 Cl(K") ® F, and H/Q is Galois. Consider the following field extension diagram:

H(¢qr V

(C(b \q/éﬁ)
|

\m/E

Here by Kummer theory, we have the isomorphism of Gal(K™*(¢,)/Q)-modules

Gal(K™* (¢, VET)/KT(¢,)) = Hom(ET @ Fy, pay),
(W)“)
)

We note that the K, H and Kt ((,, VET) are pairwise linearly disjoint over K*:

e the K and H((,, VET) are linearly disjoint over K+ since p is totally ramified over K/K* and
is unramified over H((,, VET)/K*;

e the H and K ((,) are linearly disjoint over K since ¢ is unramified over H/K ™" and is totally
ramified over K+ ((,)/KT;

e the H(,) and K+ ((,, VET) are linearly disjoint over K+((,), since Gal(K+(¢,)/K*) acts on
Gal(H((,)/K*((,)) by trivial character, and acts on Gal(K™* (¢, VE®)/K1(¢,)) = Hom(ET ®
Fg, 1) by mod ¢ cyclotomic character.

Hence we have Gal(KH((,, VET)/KT) = Gal(K/K*) x Gal(H/K*) x Gal(K*(¢,, VEF)/K*), and
KH(¢,, VET)/Q is Galois.

Since £ @ F, is a cyclic F,[A*]-module, the Gal(K* (¢, VET)/K*((,)) = Hom(E+ ® Fy, 1) is also
a cyclic F,[A*]-module. Let 7 be a generator of it. Let o¢ € Gal(H/K ™) be the element corresponding
to €. Then by Chebotarev density theorem, there exists infinitely many prime £ of K H({, VE+ ) such
that Frobge (K H((,, VEY)/Q) is equal to

O’i—><ui—>

(1,0¢,7) € Gal(K/K) x Gal(H/K*) x Gal(K* (¢, VET)/K*(¢,))
/

C Gal(K/K™) x Gal(H/K™) x Gal(K*(¢,, VEF)/KT)
= Gal(KH(C,, VET)/KT) € Gal(KH((y, VET)/Q).

Take ¢ = £NZ and [ = £N O+, we claim that they satisfy the desired condition. In fact we only
need to check that the map (3.1) is injective. Suppose u € £T is in the kernel of (3.1), then we have
(umod I7) € (0, /1)) = (F)) for any 0 € AT, ie. u!"D/7 =1 (mod?) for any o € AT. Since
the 7 is equal to the restriction of Frobg to K*(¢,, VET), we have (¢u)” = (¢/u)’ (mod £), therefore
(Yu)/u = (Yu)~! = uD/7 =1 (mod £). On the other hand, (/u)”/¢u € p, C F), hence we
must have (¢/u)” = /u and u € K*((,) since 7 is a generator. This implies that u € (K*)? (let o, be
a generator of Gal(K*((,)/K™) = Fx, then 1 # a € F hence 1 —a € F); we have ({/u)?* = (- /u for
some ¢ € piq, let b= (1—a)~' € FY then it’s easy to see that ¢*- ¢/u is ﬁxed by 0,), hence u € (€T)?. O

Therefore we only need to prove that for any such [, if 3 € Anng+ (E+/CH) @2 F,), ie. if u® €
(EF)aCH for all u € T, then 1P € CI(KT)4.
6



Let L = Q(¢), then K* and L are linearly disjoint over Q. Let M+ = K+ L:

£ M*
(z)ez)* +
| PN
[ QGp+gh)=K" L=Q(C) (&—1)
¢ A+\ Q Q/ZZ)X ‘g

Since £ is unramified in KT and is totally ramified in L, the [ is totally ramified in M*. Let £ be
the unique prime ideal of M T over [, then Q)+ = £71. The (¢, — 1)Oy is the unique prime ideal of
L above ¢, and (Or = ({; — 1)"*Or. Any prime of K+ above £ is of form [ for a unique o € A¥,
and we have £Op+ = [],cas 1. Similarly, any prime of M * above ¢ is of form £° for a unique
o € Gal(M*t/L) = Gal(K*/Q) = A*, and we have ({; — 1)Op+ = [occaiar ) £7 as well as
O+ = HoEGal(]M‘*’/L)(SJ)e_l'

Note that [] .+ (Z/€Z)* @ F, is (non-canonically) isomorphic to F,[A™] as a Fg[A*]-module, given
by (s™),ea+ = 3, car n(o)o, where s is a fixed generator of (Z/¢Z)*. We can conclude that
under this isomorphism and (3.1), €T ® F, is isomorphic to F,[AT]*"™=0 as a F,[AT]-module, where
sum : F [AT] = Fo, > car n(0)o = > cas (o). This is by counting dimension and note that for any
u e ET we have [u] = [u?t!] € ET/(E1)7 and N+ o(u?™!) = 1, it’s easy to see that the image of ud+?
in F,[AT] is contained in F [AT]swm=0,

Lemma 3.3. Let§ € (CT)? be an element. Then there exists an elemente € Oy, such that Nys+ i+ (€) =

1 and e =6 (mod £7) for all ¢ € Gal(M ™ /L) (or equivalently, e = & (mod (, — 1)).

Proof. Let ¢ be the unique non-trivial element of Gal(M/M™), which is also the unique non-trivial
element of Gal(K/K™), here the field M = KL is defined in §2 First we claim that (CT)? = N/ g+ (C):

b —b
in fact, for b € (Z/pZ)* we have (Ez_i)c gp_l N =( bc” , therefore

(p—1)/2 (p—1)/2 ¢ 2m(b)
Nic/xc+(C) = H G 11 (C 1) m(b) €Zp,
b=2 b=2 p

as well as
m(b) € Z, v € u(K) = pgp such that

1)/2 m(b)
ot — 7(pH/ G -1 (p—1)/2
Cp 1 72 _ H (C;—b)m(b) c Ly )

b=2
b=2

here we note that once m(b) is given, there are always two  satisfy the condition.
Therefore if § € (CT)? = Nk, g+ (C), we may write

d=Neer | [[ @-0"®)= [ (&-vgt-1)""

be(Z/pL)* be(Z/pZ)*

where m(b) satisfies 3y (7,7« m(b) = 0. We take € to be

m — m(b
e=Nuper [ [] (@-m@) = T (- )™,
be(Z/pZ)* be(Z/pZ)>
then it is easy to check that e satisfies all the desired properties. O

Now let ug € €' be an element which maps to a generator of E* @ F, as a Fy[A*]-module (note that
EY@F, 2 F [AT]"m=0 25 F [A+]/ S0 A+ o which is a cyclic Fy[A*]-module), and let u = uf*' € £7,
then obviously v and ug map to the same element of £ ®F, (by abuse of notation, we denote its image
in F,[A*] by u). Since uf) € (E1)ICT, we may write uf) = v050 for some vy € T and §y € C*, and write
uP = 018 with v = o™ € £ and § = 67T € (CT)7H! C (C1)? since ¢ is odd. Let € be the element
corresponding to ¢ in the above lemma.

The generator s of (Z/¢Z)* gives a generator T of Gal(M™/K™) by {; + ¢§. The 7 — ¢ extends to
a cocycle Gal(M™/K*) — (M™)* by the condition Nps+ g+ (e) = 1. Hence by Hilbert’s Theorem 90,

7



HY(M*/K*,(M%)*) =0, the above cocycle is a coboundary, which means that there exists o € (M+)*
such that o™ /o = «.

The fractional ideal aO@ys+ is stable by Gal(M™*/K™)-action, hence by considering prime ideal de-
composition, aOp+ = (aOp+)b for some fractional ideal a of KT whose prime ideal decomposition
only contains unramified primes over M /K™, and b is a fractional ideal of M T whose prime ideal
decomposition only contains ramified primes over M /K™ namely, {SU}UeGaI( m+/r)- This means that

(32) OéOM+ = (CIOM+) H (SU)T(J),
oceGal(Mt/L)

where for each o, r(o) is an integer.
Similar to the proof of Lemma 2.2, for any ¢ € Gal(M* /L), the /(¢ — 1)"(@) € M+ is a £7-unit,
and

a a i ex € a
0 = = = . dgo),
5—'5 (CZ _ l)r(a) <(<€ _ 1)r(o—)> (C; _ 1)r(o’) sr(o’) (C@ _ ]_)T(o’) (mo )
therefore s"(?) = ¢ = § (mod £7) for any . Note that s"(?) and § are in O+, we obtain s"(?) =
§ (mod [?) for any o, hence the image of § (also equals the image of u?) under the map

EYQF; = (Og+/l0k+)" @ Fg = Fy[AY]
is Y cas r(0)o. Since Fg[AT] = F [ATP"™=0gF, -3 v 0 =Fy[AT]- udFy- > 4 0, this implies

that 3 € R™ can be written as = 31> ca+ 1(0)0 + B2, ca+ 0 for some By € Fy[AT] and S, € F,.
The Nps+ i+ of (3.2) reads

N+ i+ () O+ = at~! H ([")T(”) —att. ( Z r(a)a) [

ceAt cEAT

which is a principal ideal, hence (3 .a+r(0)o)l € CI(KT)?. On the other hand (3>, ca+0) [ =
[I,cn+ 17 = £Ok+ is principal, so (® € CI(K*)?. This completes the proof of Theorem 1.15.

4. CATALAN EQUATION
Theorem 4.1 (Catalan Conjecture). Let p,q > 2 be two integers, then the equation
P —yl=1
has no solutions (x,y) in positive integers other that (x,y,p,q) = (3,2,2,3).

The cases of ¢ = 2 and p = 2 are proved by Lebesgue and Chao Ko, respectively. Then to prove the
conjecture, it reduces to the following

Main Theorem [Mihailescu]. Let p # g be two odd primes. Then the equation

aP —yl =1,
z,y € Z\ {0}
has no solutions. (We call the above Diophantine equation (%) the Catalan equation.)

We give some elementary remarks. First, 2P — y? = 1 is equivalent to (—y)? — (—x)P = 1.
Lemma 4.2. For any integer x # 1,

P—1
(x—l,x )zlorp.
z—1
P —1

and in this case 2)(:61’—1
r—1" L

Moreover, plz — 1 if and only ifp‘

Proof. Note that % —p =0 mod z for any integer z # 0. (]

Lemma 4.3. If (x,y) is a solution to the Catalan equation. Then

P -1\ y?+1\
r—1, —— | =p < ply, y+1, =q < q|z.
r—1 y+1

Lemma 4.4. Assume that g|x, then
(i) y=-1 (modqp_l) and y| > ¢*~! — 1.
(ii) Moreover, if (p,q — 1) = 1, then |z| > ¢?~1 +¢q.
8



Proof. By Lemma 4.3, we may write

7+1
y+1=q"taP, yr- _:_1 = qb?; x = qab.
)
Thus (i) follows and moreover, we have
_ yi+1
P W | Sy —a=a ),

and therefore b» = 1 mod ¢*~2. Note that (Z/q"~?Z)* = F¥ x Z/q"~>Z, and by assumption (p, q(q —
1)) = 1, we have that b =1 mod ¢P~2. It is easy to see that b > 1, thus
2] > gb>q(¢"?+1) ="' +q.
O

Proposition 4.5 (Cassels). Assume that (z,y) is a solution to the Catalan equation. Then we have
(1) gz and ply;
(2) =1 (modp?™!) and y = —1 (mod ¢*~1);
(3) |z| > max(p?t(qg— 1) -1, ¢?"1 +q) and |y| > max(¢?"(p— 1)’ — 1, p?~ 1 +p).

Proof. Tt is easy to see that parts (2) and (3) follow from (1) by Lemma 4.4. Assume that ¢ { 2. Then

741

(y +1, Y _:_1 ) =1and y+ 1 = b for some integer b # 0,1. Thus z? — (b — 1)? = 1. Consider the
)

increasing function f(z) = P — (b? — 1)9 with b # 0,1 constant and z variable. It is easy to see that

f(b%) > 1 and if p > ¢, then

(b4 =)V < (b —1)VP ifb > 1,
L+ (=D)D)Y9 > (L+ (=0)P)/P,  ifb <0,

and therefore f(b% — 1) < 0. Thus we have shown that if p > ¢ then ¢|z, and by symmetric if ¢ > p then

ply.
We now assume p > ¢ and want to show that ply. Suppose that p { y, then 2z — 1 = a? for some integer

a # 0, and therefore y = a? F(a™9), where F is the function
F(t) = ((1+ )P — 7)Y/,

An observation is that the Taylor series around ¢ = 0 of F(t) and that of (1 +¢)?/¢ have the same terms
of degree i < p (which is (pgq)ti), since near t = 0 we have that

F(t) = i <1éq> (L+t)P -2 — 1)1, (1+)Pl1= i <1éq> (L+t)P — 1)

Now for integer k, p/q < k < p, consider the g-integer

B =Pk := q’“(F(t)—F(t))} € Zlgt _ - p/q\ i
T PRe=a k t=a—d a Fk(t)—z )t

; i
=0
whose ¢-adic valuation is ord, (p,/cq) = —k — ord, k!. Thus we have a lower bound of |3|:
|B| > qorqu — q—k—ordq k!.

On the other hand, since ¢|z and (p,q — 1) = 1, by Lemma 4.4, [a? + 1| = |z| > ¢~ + ¢q. This
produces a contradictory upper bound of |3| by applying the below lemma to t = a~% and k = [p/q] + 1:

|al®

< < 1-p < —k—ordg k!.
S a1 = a2 =7 <1
O
Lemma 4.6. For k= [p/q] + 1, we have
|t|k+1
|F(t) — Fr(t)] < Vit eR,|t] < 1.

(1 —1e)?”



Proof of Lemma 4.6. For |t| < 1, we have
IF(t) — Fu(D)] < |[F(t) — (1 +t)p/"‘ + ’(1 )P/~ Fy(t)|.
Now the first term can be estimated by the mean value theorem for the function z — '/
[F(8) = (L 079 < g7 I < g P = e < g e i)

Here t' € R is between (1 + )P and (1 + ¢)? — tP so that |¢'| > (1 — [¢])P. To estimate the second term,
by the remainder term of Taylor series expansion of G(t) := (1 + t)?/? (note that Gy = F}, for k < p),
we have

tk+l p/q L 1 B
(+op/e = R = | ) | LA

(k+1)! k+1
Here t' € R is between 0 and ¢ so that |1 +¢/| <1 — [¢].
Now combining two terms and noting that p > k + 1, k,q > 2, we have

p k+1
rw-rols (L ) - <o -

k:+1( /)

O

4.1. Selmer group and Mihailescu element. Let K = Q(u,) and A = Gal(K/Q). Denote I the
group of fractional ideals of K. Consider the selmer group

Sel(K, pq) :=ker (K* /K™% — I [qlx, [€]— (€)).

Let E be the group of global units of K and C1(K) the ideal class group of K. We have a exact sequence
of F,[A]-modules:
0 — E/E? — Sel(K, uq) — CI(K)[g] — 0.

Here the first map is embedding and the second is given by [¢] — (£)/2.
Proposition 4.7. Let (x,y) be a solution of Catalan’s equation in Zio, then:
—<

=i
-

here ¢ is a fixed primitive p-th root of unity.

z—¢
1-¢

] € Sel(K, ),

) _
Remark 4.8. For any 6 ¢ Fq[A]deg:O7 [ } = [(x — C)G] € Sel(K, pq). In particular, ﬁ:ﬂ =
[(z —¢)7] € Sel(K, ug) -

4.2. Stickelberger’s theorem and [(z — ¢{)~]. The Stickelberger element in Q[A] is defined by © =
p—1 .

Z {Z} o; !. The Stickelberger ideal is defined by I = Z[A] N OZ[|A].

- p

i=1

Remark 4.9.
p—1
(1) The Stickelberger ideal is generated by 6, = (a — 0,)0 = Z [ } ~1 for (a,p) = 1.

=1
(2) (1 —7)1 is generated by (1 —¢)(0a41 — 04), for 1 <a < (p-—1)/2.
Theorem 4.10 (Stickelberger). [6]1 C Annga](CL(K)). In particular,(I®F,)” C Anng, (a)Sel(K, py)~

Theorem 4.11. [8]/A] Suppose (x,y) € Z2 is a solution of Catalan’s equation, then
(0) plh, and glh, . In particular, p,q > 41.
(1) ¢’z and p?|y.
Remark 4.12. Idea of the proof:
(0) The element [(x — ¢)~] is nontrivial in Sel(K, pq)~ =~ CI(K)[q]™.
(1) Using Stickelberger element, we can show that Anng a)([(z —¢)7]) # 0. And we thus have
(1 — ¢x)? = b for some 0 € (1 — 7)Z[A] (For example, § = (1 — 7)f,.) such that ¢ { 6 and
be K*. As gz, we know that (1 —(z)? = b7 =1 (modg). Thus (1 —(z)? =1 (modg¢?), thus
¢l
10



(2) To show (p,q —1) = 1, reduce to show q < 4p*. Note that for § € I(1 —7), let ay € K* be such
that (z — ()% = ag, then ag is very close to some ¢, under a fixed embedding K — C. When
q > 4p?, We will find a @ such that ag and ag are very close to 1 and ||| is very small such that
the upper bound of N(ag—1) will small than the lower bound of N(ag—1) > (1+4|z|)~!1¢l1(p=1)/2a,

Proof.
(0)
Fact 4.13. Let o, 8 € Ok such that « — B € OF and o/ € K™%, then we can produce a unit
7= (a1 - Y77 € OF,
where o4, Y are chosen such that (/)9 = o, (8Y/9)9 = § and a*/1/BY1 € K.

If [%} € Sel(K, pq) is trival, then % € K1, Let a = % and 8 = %757 then o, 8 € Ok and
a—f= % € OF. Then we have a unit v € O as in the above fact. As K has no real embedding,
N(v) = 1. Note that v does not depend on the choice of o'/ and 5%/4, because ¢, ¢ K. Let m be the
unique prime ideal of K above p. We will study w-adic properties of the equation N(v) = 1.

Write @« = 1 + p here p = ff_é with p?~ 17~ u. And we have 8 = —((1 + @) with p?~ 7~z We
may choose

o~ (1a\ i =1 e (V4 o
= (14p)" = ‘e KNK, dw' = (-C(1 Va .= ¢t/ e KNK,.
w=(14p) ;:o:(i)” R, andu’s= (5=~ (V)7 e
We have w/w’ € K follows from w =1 (mod ), w’ = —1 (mod 7) and the following fact:

Fact 4.14. Let 6 € K be the unique element such that 67 = %’ then 6 = —1 (mod ).
Proof. This is because 1 = §0 = §? (mod 7) and §¢ = —1 (mod 7). O

Nw—-w)1= (mod /ﬂ) implies w —w' =1+ (mod ;ﬁ): By computation we have:

(z -1 -q)

Nw—-w)l=1
(w—w") + 2

(modrw(z — 1)),

Thus p|1 — ¢ and
w—w' = (14 p/q)+¢ V(1 +7/q) =1+ (mod p?).
By the above analysis, we may consider expansion of N(w — w’)? modulo p3. It turns out that

(1-g)(z—-1%1-p?
2q 12

Nw—-w)l=1+ (mod p*),
thus p?=1| @, contradiction.

(2) We first reduce to show q < 4p?: Write y + 1 = ¢P~'aP, then 1 = ¢ 'a? = a? (modp) and hence
a? =1 (modpz). As p?|y, we have ¢~ = 1 (modpz). If pljg— 1 then ¢? = 1 (modp2), thus p?|q — 1.
Fix an embedding K — C. Suppose that ¢ > 4p?, by the following lemma and the facts |x| > ¢?~! and
q > 5 we get the contradiction.

Lemma 4.15. If ¢ > 4p?, then there exists 6 € I~ with ||0]| < ;qu such that N(og —1) < %, here
ag € K* is such that (z — ()% = af.
Proof. e We have an injective homomorphism:
_ 0
(1= 7 ([ = €)= {or € K| 3¢ € g sh that [6(a) = G < 1)

0+ ag (such that (z — ¢)? = o).

— Existence of (;: Exists ¢, such that garg(ag(, ') = arg(eg). Note that |ag| = 1, thus

@ = Gl < Jarg(ant; )| < 1/qllog(1 = ¢/a)’| < qu”ﬂl) .

|2

Here the last inequality follows from for |z| < 1, |log(l + z)| < 777> here the log is the
principle branch of the logarithm.
11



— Injectivity:(7) %(CO are co-prime to each other; (ii) The lower bound of |z| implies 2

1-¢
is not unit.
e If p,q > 5 and ¢ > 4p?, then exists at least ¢ + 1 element in I~ C (Anngaj[(z — ¢)~]) with size
16]] < 3%

Thus by box principle, exists 8’,8"” such that corresponding to same (,, thus can get upper
bound of ‘049/_9// — 1|: ‘0491_9// — 1| < |Otg/ — <q| + |049// — Cq| < m Thus

Niog—s) € o
apr—p) < g
(x| + 1))
= rai
— Consider the stickelberger element 6, = Z [;}a{l, 1 <i< (p—1)/2. Then ¢; :=

i=1
(1 =7)(0i41 — 0;) is a Z-basis of I~ and has the property that half of coefficients equals to
1 and half of coefficients equals to —1. By using this fact, under the restriction ¢ > 4p?,
exists at least ¢ + 1 element in I~ with || - || < %.

O
O
Remark 4.16. Let E be the group of global units of K, C the subgroup of F generated by cyclic units

i.e. the subgroup generated by roots of unity and ? < 2, a=2,---,(p—1)/2. Let C, the subgroup
2 2
of C generated by root of unity and elements which congruent to 1 modulo ¢2.

(1) Let Sely-str,p-rel (K, itq) be the subgroup of K> /K*? consists of £ such that the prime decom-
position of (§) is a g-th power outside primes above p and £ is a ¢-th power at every prime
divides ¢q. ¢*|x implies that [z — (] € Selqstr.pret(K, fiq). As ¢*|x, thus for any 6 € F,[A]T, if
(x—¢)? € CK*9/K>9, then (z — ()% € C,K*1/K*1.

(2) (¢,p —1) = 1 implies that R = F,[A] is a semisimple algebra. Note that E/E? is a cyclic
R-module. Consider the filtration of E/E9,

C,E'/EY C CEY/EY C E/CEY C EEY,

we have
Anng(CyEY/E?) - Aung(CEY/EY) - Aung(E/CEY) = Anng(E/EY) = NR

4.3. Rigidity of [z — ¢(]*. Let (x,y) be a solution to the Catalan equation and ¢ € p, be a primitive
p-th root of unity (will viewed as an element in C). The algebraic number

r—(€K:=Q(u,) cC

will play a key role in the story. The following rigidity property of x — ¢ is important to the proof of
Catalan conjecture. Let A = Gal(K/Q), o : (Z/pZ)* =+ A the isomorphism such that o,(¢) = ¢°.
Denote by

ZIAIY =) naoa € ZIA] | ng =ny_a} = (14 0_1)Z[A],
denote by deg : Z[A] — Z be the degree map deg(d_nq,0,) =Y, no. Then we have

Theorem 4.17 (Mihailescu). [2] If 0 € (1 + 7)Z[A] with q|deg such that (x — ()? € K*9, then
0 € qZ[A].

Proof. Note that if o« € K>, then there exists a unique «'/¢ € K*. Consider
(z — )% = xdegé’/q(l - C$_1)9/q = xdege/qg(gc—l)’

where G(t) is the analytic function around t = 0 defined as follows. Write § = > n,o, and fix an
embedding of ¢ + ¢~ ! € R, then

6= 1 -cr = [Ta -y =TT Y (")) =gy

a a =0



where the summation over a should be regarded as summation over ¢ mod =+ 1 using 6 € Z[A]*"

a=Hg" Y H(”‘;a/q)(—w“

S ia=k a
k! '
= X g Hrelu =0 = o= Da)(-¢)" € Ox
Siame 0

k
= (— Zna<a> (mod q)
Note that ¢ is unramified over K, it is enough to show that g|a; for some ¢ > 0. We may assume that
0 =>,n.0, with
ng >0, Va; 0< k:=degl/q < prl’
and we will show that g|ay. Consider
Bi= gttt (G — Gi(e™!) € Ok, B=ar mod g,

Here we have 2*G(x™1) € Ok since n, > 0 for all a. We will actually show that 3 = 0 so that g|as and
complete the proof. Comparing G(t) and H(t) := (1 —t)~*, by Taylor’s theorem

181 < g*terda Bz (H(ja| ) — Hy (|| ))

el (o) O e R

where the last inequality follows from |z| > ¢?~! + ¢ by Proposition 4.5 and 0 < k < (p — 1)/2.
Note that 6 € Z[A]. For any 0 € A and ¢t € Q with [¢| < 1,

(a- gt)e/q)g — (1— ()4 e R.

(Since they are g-th root of (1 — (t)? € R.) Thus by the same argument, |3°| < 1 for all o € A, and
therefore § = 0 and q|a,,. O

< qk+ordq k!|l‘|k

4.4. Thaine’s theorem and [z —(¢]*. As (p—1,¢) = 1, we have natural isomorphism of Z,[A]-algebras
Zq[A] = P Zy[Im x],
[x]
here x runs over all g-adic characters of A and [x] is the Gal(Q,/Q,)-orbit of x. For any Z,[G]-module
M, denote My = M ®z,c) Zq[Im x].

Theorem 4.18. [4][5] Suppose (¢,p — 1) = 1, then for any x : A — @q a even character, then
#(E/C)[¢>®]y = #CUK)[g™®]y. In particular, two Z4[A]-modules (E/C)[g™]y, CL(K)[g™], have same
Jordan-Holder series.

Corollary 4.19. E/CE? ~ CI(K)[q]* as R-modules.
Corollary 4.20.

(Sel(K, ug)*)AmmnE/CED  CE? /B
here view CE1/E? as subgroup of Sel(K, ug).

Remark 4.21. The proof of the corollary only use the property Anng(E/CE?) C AnngCl(K)[q]T. And
this property can be prove only using a result of Thaine: Anng,_a)((E/C)[¢™]) C Anng, a)(CI(K)[g>]T).

Corollary 4.22. Assume the Catalan’s equation has a solution in Zio, then

Anng(Cy,EY/EY)Anng(E/CE?) C Anng(E/E?).
+

Proof. Consider [(z — ¢)*] = [fﬂ [(1—¢)~Y* € K*/K*9. Note that [%ﬂ € Sel(K, Q) and
[1 — ¢]? is represented by cyclotomtic unit for any @ with degf = 0. By Corollary 4.20, for any 6 €
Anng((E/CE?)) N R8=0 we have [(z — ()*]? € OK* /K>, and thus in C, K* /K> by first remark
of Remark 4.16. By rigidity of Mihailescu element

0 = Anng(C,E?/E?)(Anng((E/CE?)) N RI=Y).

13



As the norm element N kill E/E? and F, - N 4+ R%&=0 = R, thus

Anng(C,E1/E)Anng(E/CE?) C Anng(C,E?/E?)(Anng(E/CE?) N RY*=" 4 F,N) C Anng(E/E?)
d

4.5. Proof of the main theorem.

Theorem 4.23. [1][3] Assume q < p are two odd primes, then the following equation

af —yl=1
has no solution in nonzero integers.
Proof. If (z,y) is a solution, by Corollary 4.22 and the second remark of Remark 4.16, we have
Anng(CE?/C,E?) =0,
contradict with the following proposition

Proposition 4.24. If g < p, then C,E? # CE1.

Proof. Let ¢ be a primitive p-th root of unity, consider the cyclotomic unit 14¢? = 11:%2;. If1+¢? € Cy,
then 1+ ¢7 = u? (mod ¢?) for some u € E. We have (1 + ()7 = u? (modg), as ¢ is unramified in K,
1+ ¢ =wu (modg), thus (1+¢)? =u? (modgq?). This implies that (14 ¢)? =1+ (? (mod¢?). Consider
the polynimial 1/q((1+7T)? — T — 1) € Z[T], it has p — 1 distinct solution in Z[u,]/(¢*), we must have
p < g, contradiction. ([

O

5. FEMART EQUATION
Let K = Q(up)-
Theorem 5.1. [6] Let p be a odd prime that does not divides #CI(K), then the equation
ZP 4 yP = 2P
has no solution in nonzero integers.

Proof. Let (z,y,x) be a solution of Femart equation in (Z\{0})3.

e If pt xyz, then for any primitive p-th root of unity, z + (*y € Sel(K, u,) and = + (Fy is a unit
at p. Let E (resp. O) be the group of units (resp. integers)of K and CI1(K) the ideal class group
of K. Consider the exact sequence:

0 — E/E? — Sel(K, up) — CL(K)[p] — 0.
By assumption, CI(K)[p] = 0. And we have a natural map
a:FE/EP - E,/El ~1+7E,/(1+7E,)’ - 14+ 70/1+ pO,
here v is the prime of K above p and m = 1 — ¢. The image of z + (Ty in 1 + 71O/1 + pO is

%. As every element z in Z[¢] has the property 2 = a (modp) for some a € Z. Write
% = (Tuta € 14+70/1+pO for ut € OF " and a € Z, then we have ?‘—ny?’ = CzT% in
1+ 70/1+ pO. Thus x + Cy = ¢*"(z + (" 'y) (mod p). This will contradicts with the following
fact.

Fact 5.2. (¢, i=1,---,p— 1 is an integral basis of O.

o If p|zyz, may assume p|z and (p, zy) = 1. Let ¢ be a primitive p-th root of unity. We may prove a
stronger statement: There is no solution of equation zP +y? = (1 —C)kng with x,y, 2z € Oﬂ(’)(xp)
co-prime, u € &£, k € Z~(. Suppose we have a solution, then

(i) € == % and ¢ are in Sel(K, y,) and they are in ON O

(i7) % = /(1 =)k~ VPyP with v’ € £ and vy € ON O(Xp).

(ii7) &, € and %ﬂc’ are coprime.

Proposition 5.3. ¢ and & are in the same class of Sel(K, j1,).
14



Once they are in the same class, we can write ¢ = va? and € = v/3P for some v € £ and
a,B€OnN (’)(Xp). We have o + (=) = v~ /(14 ¢)(1 — C)(k—l)pyp, By descent, we prove the
theorem.

Proof of proposition. As p is regular, &, € represented by element in &.

Lemma 5.4 (Kummer’s lemma). If p is regular, then x € £/EP is trivial if and only if x
congruent to an integer modulo p in O.

The Kummer lemma is equivalent to the map « is injective. As ¢ and £ are p-adic units,
a(§), a(f) equivalent to the image of £, ¢ as element in &, under the map

E,/JE? ~ 1 X (L4+70,) /pp—1 X (L +70,)P - 1+ 710,/1+pO, ~1+710/1+ pO.
As p|%, we have a(£) = a(€), thus they are in the same class in Sel(K, u,). O

Algebraic proof of Kummer’s lemma. Sufficient to prove if u € £ is congruent to an integer
modulo p, then K(u'/P) is unramified. Let v be a finite place of K. If v does not divides
p, then Disc(u'/?,, Cul/P ... (P~tul/P) ¢ Dy (y1/r)/k i a v-adic unit. When v divides p, As
u congruent to a nonzero integer modulo p, replace u by u?~! may assume u = 1 (modp).
Consider the norm of u, we must have u = 1 mod 7p, where 7 = 1 — (. Now Consider the
polynomial 7 ~P((rz — 1)P 4+ u) € O[z], its discriminant is a p-adic unit. Thus K(u!/?) is
unramified everywhere. O

O

6. EXERCISES AND PROJECTS
6.1. Exercises.

Exercise 1. Let A be a finite abelian group, p be a prime such that p { #A. Let L be a finite
extension of Q, which contains all the values of all the characters od A. Let M be a finite Z,[A]-
module, for any character x : A — OF, define MX := {a € M ® Of, | a° = x(o)a for all 0 € A} and
M, :=(M®O0Or)/{(a” —x(o)a|ae M®Or,0 € A).
(i) Prove that the natural map MX — M, is an isomorphism.
(ii) Let M and N be finite Z,[A]-modules. Prove that the followings are equivalent:

(a) M and N have the same Jordan-Holder series;

(b) #M, = #N, for all character x : A — OF.

Exercise 2. Let K be a number field, « € K*, n > 1 be an integer, L = K({/«). Let p t n be a prime
ideal of Ok. Prove that L/K is unramified at p if and only if n | ord,(«).

Exercise 3. Let K be a totally real field which is Galois over Q. Let G = Gal(K/Q). Prove that there
is a unit u € O such that Z[GJu is finite index in Of. Show that O ® Q = Q[G]/N¢ as Q[G]-modules
in particular. (Hint: read the proof of Drichlet’s unit theorem.)

Exercise 4. Let G be a finite abelian group. Let p be a prime number such that p 1 |G|. For a character
X:G — Q" let Z,[x] denote the ring generated by the values of y over Z,. Then Z,[x] is a Z,[G]
module by g(a) = x(g)a.
(1) Prove that Z,[x] & Z,[x°] as Z,[G]-modules. Here o € Gal(Q,/Q,) and x? = oo x is also a
character of G (we call such two characters are Gal(Q,/Q,) conjugate).
(2) Prove that

Zy|G] = H Zyp[x]
X/~
where X1 ~ Y2 means they are Gal(Q,/Q,) conjugate. Prove that for any Z,[G]-module M,
M =[] M @z,0) Z[X].
X/~
(3) Let M and N be two finite generated free Z,-modules with an action of G. Prove that if
M ®z, Q, = N ®z, Q, as Q,[G]-modules, then M = N as Z,[G]-modules.

6.2. Projects. 7?7 Read Euler system argument 777
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APPENDIX A. THAINE’S THEOREM (WORK IN PROGRESS)

Recall that K = Q(¢,+¢, '), AT = Gal(K*/Q), ¢ is a prime not dividing @, and Rt = Z,[AT].

b_
Recall that £ := Ok, €T := Oy, C = <<‘” s b e (Z/pZ)X> ~p(K) € & and CT :=CNET. Let

&1
n > 1 be a sufficiently large integer such that ¢" annihilates (€1/C") ®z Z, and CI(K ') ®z Z,. Then
(EF/CH) @7 Zy = (E1/CY) ®7 (Z/q"Z) = ET/(ET)I"CT and CUKY) ®z Z, = CUKT) @z (Z/q"Z) =
CI(K+)/CI(K+)?". Let £ be a prime = 1 (mod p™). Then ¢ splits completely in KT. Let [ be a prime of
KT above /.

Let L = Q(¢), then KT and L are linearly disjoint over Q. Let M = KT L:

I M
(z/e2)* +

‘ Z/eZ / \A

QG+ =K" L=Q(¢) (C—1)

' A+\Q/(Z/ez>x L

Since £ is unramified in K+ and is totally ramified in L, the [ is totally ramified in M. Let £ be the
unique prime ideal of M over [, then [0y, = £/~1. The (¢, — 1)Oy is the unique prime ideal of L above
¢, and LOr, = ({; — 1)*"1Or. Any prime of K* above £ is of form [° for a unique ¢ € A*, and we have
(Ok+ = [I,en+ V. Similarly, any prime of M above ¢ is of form £ for a unique o € Gal(M/L) =
Gal(K™*/Q) = A%, and we have (¢ — 1)Owm = [I, cqaiu/r) £ as well as lOn = [, cqaiia/n) (go)-1.

Lemma A.1. Let 6 € C* be an element. Then there exists an element e € Oy, such that Ny g+ (e) = 1
and e =6 (mod £7) for all o € AT (or equivalently, e = § (mod {; — 1)).

Proof. To be added (]

Fix a generator s of (Z/¢Z)* which gives a generator 7 of Gal(M/K™*) by (; — ¢§. The 7 — ¢
extends to a cocycle Gal(M/K*) — M* by the condition Ny g+ (¢) = 1. Hence by Hilbert’s Theorem
90, HY(M/K*,M*) = 0, the above cocycle is a coboundary, which means that there exists a € M*
such that o™ /a = ¢.

To be added. ..
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